Precise Gaussian estimates of heat kernels on asymptotically flat Riemannian manifolds with poles

被引:6
作者
Aida, S [1 ]
机构
[1] Osaka Univ, Grad Sch Engn Sci, Dept Math Sci, Toyonaka, Osaka 5608531, Japan
来源
RECENT DEVELOPMENTS IN STOCHASTIC ANALYSIS AND RELATED TOPICS | 2004年
关键词
D O I
10.1142/9789812702241_0001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give precise Gaussian upper and lower bound estimates on heat kernels on Riemannian manifolds with poles under assumptions that the Riemannian curvature tensor goes to 0 sufficiently fast at infinity. Under additional assumptions on the curvature, we give estimates on the logarithmic derivatives of the heat kernels. The proof relies on the Elworthy-Truman's formula of heat kernels and Elworthy and Yor's observation on the derivative process of certain stochastic flows. As an application of them, we prove logarithmic Sobolev inequalities on pinned path spaces over such Riemannian manifolds.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 33 条
[1]  
AIDA S, 1995, CR ACAD SCI I-MATH, V321, P97
[2]   Equivalence of heat kernel measure and pinned Wiener measure on loop groups [J].
Aida, S ;
Driver, BK .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 331 (09) :709-712
[3]   Logarithmic derivatives of heat kernels and logarithmic Sobolev inequalities with unbounded diffusion coefficients on loop spaces [J].
Aida, S .
JOURNAL OF FUNCTIONAL ANALYSIS, 2000, 174 (02) :430-477
[4]  
AIDA S, 2001, PRECISE GAUSSIAN LOW, P1
[5]  
[Anonymous], 1993, S MIN PROBAB STRAS
[6]  
[Anonymous], 1995, Riemannian geometry and geometric analysis
[7]  
[Anonymous], 1996, ITOS STOCHASTIC CALC
[8]  
Bismut J.-M., 1984, Progress in Mathematics, V45
[9]   MARTINGALE REPRESENTATION AND A SIMPLE PROOF OF LOGARITHMIC SOBOLEV INEQUALITIES ON PATH SPACES [J].
Capitaine, Mireille ;
Hsu, Elton P. ;
Ledoux, Michel .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 1997, 2 :71-81
[10]  
Davies EB., 1989, HEAT KERNELS SPECTRA, DOI 10.1017/CBO9780511566158