Reinforcement Learning for Neural Architecture Search in Hyperspectral Unmixing

被引:13
作者
Han, Zhu [1 ,2 ,3 ]
Hong, Danfeng [4 ]
Gao, Lianru [4 ]
Roy, Swalpa Kumar [5 ]
Zhang, Bing [1 ,2 ,3 ]
Chanussot, Jocelyn [6 ,7 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
[2] Int Res Ctr Big Data Sustainable Dev Goals, Beijing 100094, Peoples R China
[3] Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100049, Peoples R China
[4] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Computat Opt Imaging Technol, Beijing 100094, Peoples R China
[5] Jalpaiguri Govt Engn Coll, Dept Comp Sci & Engn, Jalpaiguri 735102, India
[6] Univ Grenoble Alpes, INRIA, CNRS, LJK,Grenoble INP, F-38000 Grenoble, France
[7] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
基金
中国国家自然科学基金;
关键词
Computer architecture; Training; Hyperspectral imaging; Convolution; Decoding; Network architecture; Computational modeling; Deep learning (DL); hyperspectral unmixing (HU); multiobjective optimization; neural architecture search (NAS); reinforcement learning (RL); NETWORK;
D O I
10.1109/LGRS.2022.3199583
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In this letter, a novel neural architecture search (NAS) method based on reinforcement learning (RL), called RLNAS, is devised to realize the automatic architecture design in the field of hyperspectral unmixing (HU). This method first trains the search network in the constructed self-supervised datasets based on hyperspectral images. The block-based searching and weight-sharing strategies are then introduced to reduce the computational cost in the training phase. The final optimal architecture is obtained by optimizing the multiobjective reward function to balance the trade-off between accuracy and computational efficiency. Compared with the state-of-the-art unmixing algorithms, the proposed RLNAS method can yield better unmixing results on the synthetic and real hyperspectral datasets, which verifies its effectiveness and superiority. In addition, the proposed method offers promising potential of the NAS for HU.
引用
收藏
页数:5
相关论文
共 26 条
[21]   uDAS: An Untied Denoising Autoencoder With Sparsity for Spectral Unmixing [J].
Qu, Ying ;
Qi, Hairong .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (03) :1698-1712
[22]   Feature Extraction for Hyperspectral Imagery: The Evolution From Shallow to Deep: Overview and Toolbox [J].
Rasti, Behnood ;
Hong, Danfeng ;
Hang, Renlong ;
Ghamisi, Pedram ;
Kang, Xudong ;
Chanussot, Jocelyn ;
Benediktsson, Jon Atli .
IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2020, 8 (04) :60-88
[23]   Deep Autoencoders With Multitask Learning for Bilinear Hyperspectral Unmixing [J].
Su, Yuanchao ;
Xu, Xiang ;
Li, Jun ;
Qi, Hairong ;
Gamba, Paolo ;
Plaza, Antonio .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (10) :8615-8629
[24]  
wang x, 2011, T GEOSCI REMOTE SENS, V49, P4282
[25]   Spatial Group Sparsity Regularized Nonnegative Matrix Factorization for Hyperspectral Unmixing [J].
Wang, Xinyu ;
Zhong, Yanfei ;
Zhang, Liangpei ;
Xu, Yanyan .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (11) :6287-6304
[26]   EvoNAS: Evolvable Neural Architecture Search for Hyperspectral Unmixing [J].
Han, Zhu ;
Hong, Danfeng ;
Gao, Lianru ;
Chanussot, Jocelyn ;
Zhang, Bing .
2021 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM IGARSS, 2021, :3325-3328