Reinforcement Learning for Neural Architecture Search in Hyperspectral Unmixing

被引:13
作者
Han, Zhu [1 ,2 ,3 ]
Hong, Danfeng [4 ]
Gao, Lianru [4 ]
Roy, Swalpa Kumar [5 ]
Zhang, Bing [1 ,2 ,3 ]
Chanussot, Jocelyn [6 ,7 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
[2] Int Res Ctr Big Data Sustainable Dev Goals, Beijing 100094, Peoples R China
[3] Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100049, Peoples R China
[4] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Computat Opt Imaging Technol, Beijing 100094, Peoples R China
[5] Jalpaiguri Govt Engn Coll, Dept Comp Sci & Engn, Jalpaiguri 735102, India
[6] Univ Grenoble Alpes, INRIA, CNRS, LJK,Grenoble INP, F-38000 Grenoble, France
[7] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
基金
中国国家自然科学基金;
关键词
Computer architecture; Training; Hyperspectral imaging; Convolution; Decoding; Network architecture; Computational modeling; Deep learning (DL); hyperspectral unmixing (HU); multiobjective optimization; neural architecture search (NAS); reinforcement learning (RL); NETWORK;
D O I
10.1109/LGRS.2022.3199583
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In this letter, a novel neural architecture search (NAS) method based on reinforcement learning (RL), called RLNAS, is devised to realize the automatic architecture design in the field of hyperspectral unmixing (HU). This method first trains the search network in the constructed self-supervised datasets based on hyperspectral images. The block-based searching and weight-sharing strategies are then introduced to reduce the computational cost in the training phase. The final optimal architecture is obtained by optimizing the multiobjective reward function to balance the trade-off between accuracy and computational efficiency. Compared with the state-of-the-art unmixing algorithms, the proposed RLNAS method can yield better unmixing results on the synthetic and real hyperspectral datasets, which verifies its effectiveness and superiority. In addition, the proposed method offers promising potential of the NAS for HU.
引用
收藏
页数:5
相关论文
共 26 条
[1]   Hyperspectral subspace identification [J].
Bioucas-Dias, Jose M. ;
Nascimento, Jose M. P. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (08) :2435-2445
[2]   RENAS: Reinforced Evolutionary Neural Architecture Search [J].
Chen, Yukang ;
Meng, Gaofeng ;
Zhang, Qian ;
Xiang, Shiming ;
Huang, Chang ;
Mu, Lisen ;
Wang, Xinggang .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :4782-4791
[3]   Automatic Design of Convolutional Neural Network for Hyperspectral Image Classification [J].
Chen, Yushi ;
Zhu, Kaiqiang ;
Zhu, Lin ;
He, Xin ;
Ghamisi, Pedram ;
Benediktsson, Jon Atli .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (09) :7048-7066
[4]   Nonlinear Unmixing of Hyperspectral Images [J].
Dobigeon, Nicolas ;
Tourneret, Jean-Yves ;
Richard, Cedric ;
Bermudez, Jose Carlos M. ;
McLaughlin, Stephen ;
Hero, Alfred O. .
IEEE SIGNAL PROCESSING MAGAZINE, 2014, 31 (01) :82-94
[5]   CyCU-Net: Cycle-Consistency Unmixing Network by Learning Cascaded Autoencoders [J].
Gao, Lianru ;
Han, Zhu ;
Hong, Danfeng ;
Zhang, Bing ;
Chanussot, Jocelyn .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[6]   Deep Half-Siamese Networks for Hyperspectral Unmixing [J].
Han, Zhu ;
Hong, Danfeng ;
Gao, Lianru ;
Zhang, Bing ;
Chanussot, Jocelyn .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (11) :1996-2000
[7]   A Review of Nonlinear Hyperspectral Unmixing Methods [J].
Heylen, Rob ;
Parente, Mario ;
Gader, Paul .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) :1844-1868
[8]   SpectralFormer: Rethinking Hyperspectral Image Classification With Transformers [J].
Hong, Danfeng ;
Han, Zhu ;
Yao, Jing ;
Gao, Lianru ;
Zhang, Bing ;
Plaza, Antonio ;
Chanussot, Jocelyn .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[9]   Interpretable Hyperspectral Artificial Intelligence: When nonconvex modeling meets hyperspectral remote sensing [J].
Hong, Danfeng ;
He, Wei ;
Yokoya, Naoto ;
Yao, Jing ;
Gao, Lianru ;
Zhang, Liangpei ;
Chanussot, Jocelyn ;
Zhu, Xiaoxiang .
IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2021, 9 (02) :52-87
[10]   Endmember-Guided Unmixing Network (EGU-Net): A General Deep Learning Framework for Self-Supervised Hyperspectral Unmixing [J].
Hong, Danfeng ;
Gao, Lianru ;
Yao, Jing ;
Yokoya, Naoto ;
Chanussot, Jocelyn ;
Heiden, Uta ;
Zhang, Bing .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (11) :6518-6531