Faking photon number on a transition-edge sensor

被引:8
作者
Chaiwongkhot, Poompong [1 ,2 ,3 ,4 ]
Zhong, Jiaqiang [5 ,6 ]
Huang, Anqi [7 ,8 ]
Qin, Hao [9 ]
Shi, Sheng-cai [5 ,6 ]
Makarov, Vadim [10 ,11 ,12 ,13 ]
机构
[1] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[2] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada
[3] Mahidol Univ, Fac Sci, Dept Phys, Bangkok 10400, Thailand
[4] Quantum Technol Fdn Thailand, Bangkok 10110, Thailand
[5] Chinese Acad Sci, Purple Mt Observ, 10 Yuanhua Rd, Nanjing 210033, Peoples R China
[6] Chinese Acad Sci, Key Lab Radio Astron, 10 Yuanhua Rd, Nanjing 210033, Peoples R China
[7] Natl Univ Def Technol, Coll Comp Sci & Technol, Inst Quantum Informat, Changsha 410073, Peoples R China
[8] Natl Univ Def Technol, Coll Comp Sci & Technol, State Key Lab High Performance Comp, Changsha 410073, Peoples R China
[9] Natl Univ Singapore, Ctr Quantum Technol, 3 Sci Dr 2, Singapore 117543, Singapore
[10] Skolkovo, Russian Quantum Ctr, Moscow 121205, Russia
[11] Univ Sci & Technol China, Natl Lab Phys Sci Microscale, Shanghai Branch, Shanghai 201315, Peoples R China
[12] Univ Sci & Technol China, CAS Ctr Excellence Quantum Informat, Shanghai 201315, Peoples R China
[13] Natl Univ Sci & Technol MISiS, NTI Ctr Quantum Commun, Moscow 119049, Russia
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金; 国家重点研发计划; 俄罗斯科学基金会;
关键词
QUANTUM KEY DISTRIBUTION; HIGH-SPEED; DETECTOR; ATTACK; COUNTERMEASURE; SECURITY; HACKING;
D O I
10.1140/epjqt/s40507-022-00141-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study potential security vulnerabilities of a single-photon detector based on superconducting transition-edge sensor. In one experiment, we show that an adversary could fake a photon number result at a certain wavelength by sending a larger number of photons at a longer wavelength, which is an expected and known behaviour. In another experiment, we unexpectedly find that the detector can be blinded by bright continuous-wave light and then, a controlled response simulating single-photon detection can be produced by applying a bright light pulse. We model an intercept-and-resend attack on a quantum key distribution system that exploits the latter vulnerability and, under certain assumptions, able to steal the key.
引用
收藏
页数:10
相关论文
共 42 条
[21]   Development of an Optical Transition-Edge Sensor Array [J].
Konno, Toshio ;
Takasu, Sachiko ;
Hattori, Kaori ;
Fukuda, Daiji .
JOURNAL OF LOW TEMPERATURE PHYSICS, 2020, 199 (1-2) :27-33
[22]  
Lita AE, 2008, OPT EXPRESS, V16, P3032, DOI 10.1364/OE.16.003032
[23]   Measurement-Device-Independent Quantum Key Distribution [J].
Lo, Hoi-Kwong ;
Curty, Marcos ;
Qi, Bing .
PHYSICAL REVIEW LETTERS, 2012, 108 (13)
[24]   Overcoming the rate-distance limit of quantum key distribution without quantum repeaters [J].
Lucamarini, M. ;
Yuan, Z. L. ;
Dynes, J. F. ;
Shields, A. J. .
NATURE, 2018, 557 (7705) :400-403
[25]   Tailored bright illumination attack on distributed-phase-reference protocols [J].
Lydersen, L. ;
Skaar, J. ;
Makarov, V. .
JOURNAL OF MODERN OPTICS, 2011, 58 (08) :680-685
[26]   Controlling a superconducting nanowire single-photon detector using tailored bright illumination [J].
Lydersen, Lars ;
Akhlaghi, Mohsen K. ;
Majedi, A. Hamed ;
Skaar, Johannes ;
Makarov, Vadim .
NEW JOURNAL OF PHYSICS, 2011, 13
[27]   Superlinear threshold detectors in quantum cryptography [J].
Lydersen, Lars ;
Jain, Nitin ;
Wittmann, Christoffer ;
Maroy, Oystein ;
Skaar, Johannes ;
Marquardt, Christoph ;
Makarov, Vadim ;
Leuchs, Gerd .
PHYSICAL REVIEW A, 2011, 84 (03)
[28]   Thermal blinding of gated detectors in quantum cryptography [J].
Lydersen, Lars ;
Wiechers, Carlos ;
Wittmann, Christoffer ;
Elser, Dominique ;
Skaar, Johannes ;
Makarov, Vadim .
OPTICS EXPRESS, 2010, 18 (26) :27938-27954
[29]   Hacking commercial quantum cryptography systems by tailored bright illumination [J].
Lydersen, Lars ;
Wiechers, Carlos ;
Wittmann, Christoffer ;
Elser, Dominique ;
Skaar, Johannes ;
Makarov, Vadim .
NATURE PHOTONICS, 2010, 4 (10) :686-689
[30]  
Lydersen L, 2010, QUANTUM INF COMPUT, V10, P60