Maximum likelihood estimation for semiparametric regression models with panel count data

被引:10
|
作者
Zeng, Donglin [1 ]
Lin, D. Y. [1 ]
机构
[1] Univ N Carolina, Dept Biostat, 3101 McGavran Greenberg Hall, Chapel Hill, NC 27599 USA
基金
美国国家卫生研究院;
关键词
EM algorithm; Interval censoring; Nonhomogeneous Poisson process; Nonparametric likelihood; Proportional means model; Random effect; Recurrent event; Semiparametric efficiency; Time-dependent covariate;
D O I
10.1093/biomet/asaa091
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Panel count data, in which the observation for each study subject consists of the number of recurrent events between successive examinations, are commonly encountered in industrial reliability testing, medical research and other scientific investigations. We formulate the effects of potentially time-dependent covariates on one or more types of recurrent events through nonhomogeneous Poisson processes with random effects. We employ nonparametric maximum likelihood estimation under arbitrary examination schemes, and develop a simple and stable EM algorithm. We show that the resulting estimators of the regression parameters are consistent and asymptotically normal, with a covariance matrix that achieves the semiparametric efficiency bound and can be estimated using profile likelihood. We evaluate the performance of the proposed methods through simulation studies and analysis of data from a skin cancer clinical trial.
引用
收藏
页码:947 / 963
页数:17
相关论文
共 50 条
  • [1] Maximum likelihood estimation in semiparametric regression models with censored data
    Zeng, D.
    Lin, D. Y.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2007, 69 : 507 - 536
  • [2] Maximum likelihood estimation for semiparametric regression models with interval-censored multistate data
    Gu, Yu
    Zeng, Donglin
    Heiss, Gerardo
    Lin, D. Y.
    BIOMETRIKA, 2024, : 971 - 988
  • [3] Maximum likelihood estimation for semiparametric transformation models with interval-censored data
    Zeng, Donglin
    Mao, Lu
    Lin, D. Y.
    BIOMETRIKA, 2016, 103 (02) : 253 - 271
  • [4] Maximum likelihood estimation for semiparametric regression models with multivariate interval-censored data
    Zeng, Donglin
    Gao, Fei
    Lin, D. Y.
    BIOMETRIKA, 2017, 104 (03) : 505 - 525
  • [5] A GENERAL ASYMPTOTIC THEORY FOR MAXIMUM LIKELIHOOD ESTIMATION IN SEMIPARAMETRIC REGRESSION MODELS WITH CENSORED DATA
    Zeng, Donglin
    Lin, D. Y.
    STATISTICA SINICA, 2010, 20 (02) : 871 - 910
  • [6] Simultaneous variable selection and estimation in semiparametric regression of mixed panel count data
    Ge, Lei
    Hu, Tao
    Li, Yang
    BIOMETRICS, 2024, 80 (01)
  • [7] Maximum Likelihood Estimation of Semiparametric Mixture Component Models for Competing Risks Data
    Choi, Sangbum
    Huang, Xuelin
    BIOMETRICS, 2014, 70 (03) : 588 - 598
  • [8] Semiparametric Regression Analysis of Panel Count Data: A Practical Review
    Chiou, Sy Han
    Huang, Chiung-Yu
    Xu, Gongjun
    Yan, Jun
    INTERNATIONAL STATISTICAL REVIEW, 2019, 87 (01) : 24 - 43
  • [9] A Bayesian approach for semiparametric regression analysis of panel count data
    Wang, Jianhong
    Lin, Xiaoyan
    LIFETIME DATA ANALYSIS, 2020, 26 (02) : 402 - 420
  • [10] A Bayesian approach for semiparametric regression analysis of panel count data
    Jianhong Wang
    Xiaoyan Lin
    Lifetime Data Analysis, 2020, 26 : 402 - 420