Increase of bone marrow-derived secretory lineage epithelial cells during regeneration in the human intestine

被引:61
作者
Matsumoto, T
Okamoto, R
Yajima, T
Mori, T
Okamoto, S
Ikeda, Y
Mukai, M
Yamazaki, M
Oshima, S
Tsuchiya, K
Nakamura, T
Kanai, T
Okano, H
Inazawa, J
Hibi, T
Watanabe, M
机构
[1] Tokyo Med & Dent Univ, Grad Sch, Dept Gastroenterol & Hepatol, Bunkyo Ku, Tokyo 1138519, Japan
[2] Keio Univ, Sch Med, Dept Internal Med, Tokyo, Japan
[3] Keio Univ, Sch Med, Dept Diagnost Pathol, Tokyo, Japan
[4] Keio Univ, Sch Med, Dept Physiol, Tokyo, Japan
[5] Tokyo Med & Dent Univ, Med Res Inst, Dept Mol Cytogenet, Tokyo, Japan
关键词
D O I
10.1053/j.gastro.2005.03.085
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Background & Aims: We have previously reported that bone marrow (BM)-derived cells contribute to the regeneration of the human intestinal epithelium. To analyze further how these cells arise, proliferate, and differentiate as epithelial cells, histologic analysis was conducted using endoscopic specimens. Methods: Thirty biopsy specimens from 14 female, sex-mismatched BM-transplantation recipients were examined. BM-derived cells were identified by fluorescent in situ hybridization (FISH) for the Y chromosome and immunohistochemistry. Multicolor FISH was used to exclude cell fusion. These cells were further analyzed for various differentiation or proliferation markers. Results: No evidence of cell fusion was detected. BM-derived cells did not distribute within the crypt as stem cells and rarely expressed Musashi-1. However, BM-derived epithelial cells frequently expressed Ki-67, and some of these cells appeared as pairs of adjacent cells. These cells also expressed markers of all 4 lineages of terminally differentiated cells. During regeneration following graft-vs-host disease, the number of BM-derived cells was substantially increased within Ki-67-positive cells. Interestingly, the number of cells expressing markers for secretory lineage cells was significantly increased within BM-derived cells. This change was unique for BM-derived cells, resulting in a significantly increased proportion of BM-derived cells among secretory lineage cells. Conclusions: BM-derived epithelial cells arise via a mechanism other than cell fusion and rarely give rise to stem cells. However, a small proportion of these cells express proliferation markers, and a majority reside as terminally differentiated cells. During regeneration BM-derived cells increase as secretory lineage cells, thereby contributing to restore epithelial functions.
引用
收藏
页码:1851 / 1867
页数:17
相关论文
共 52 条
[1]   Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes [J].
Alvarez-Dolado, M ;
Pardal, R ;
Garcia-Vardugo, JM ;
Fike, JR ;
Lee, HO ;
Pfeffer, K ;
Lois, C ;
Morrison, SJ ;
Alvarez-Buylla, A .
NATURE, 2003, 425 (6961) :968-973
[2]   Stem cells: the intestinal stem cell as a paradigm [J].
Bach, SP ;
Renehan, AG ;
Potten, CS .
CARCINOGENESIS, 2000, 21 (03) :469-476
[3]   Clonal analysis of mouse intestinal epithelial progenitors [J].
Bjerknes, M ;
Cheng, H .
GASTROENTEROLOGY, 1999, 116 (01) :7-14
[4]   Gut instincts: thoughts on intestinal epithelial stem cells [J].
Booth, C ;
Potten, CS .
JOURNAL OF CLINICAL INVESTIGATION, 2000, 105 (11) :1493-1499
[5]   Bone marrow derivation of pericryptal myofibroblasts in the mouse and human small intestine and colon [J].
Brittan, M ;
Hunt, T ;
Jeffery, R ;
Poulsom, R ;
Forbes, SJ ;
Hodivala-Dilke, K ;
Goldman, J ;
Alison, MR ;
Wright, NA .
GUT, 2002, 50 (06) :752-757
[6]   ORIGIN, DIFFERENTIATION AND RENEWAL OF 4 MAIN EPITHELIAL-CELL TYPES IN MOUSE SMALL INTESTINE .5. UNITARIAN THEORY OF ORIGIN OF 4 EPITHELIAL-CELL TYPES [J].
CHENG, H ;
LEBLOND, CP .
AMERICAN JOURNAL OF ANATOMY, 1974, 141 (04) :537-&
[7]   CLONING OF HUMAN SATELLITE-III DNA - DIFFERENT COMPONENTS ARE ON DIFFERENT CHROMOSOMES [J].
COOKE, HJ ;
HINDLEY, J .
NUCLEIC ACIDS RESEARCH, 1979, 6 (10) :3177-3197
[8]   Bone marrow-derived cardiomyocytes are present in adult human heart - A study of gender-mismatched bone marrow transplantation patients [J].
Deb, A ;
Wang, SH ;
Skelding, KA ;
Miller, D ;
Simper, D ;
Caplice, NM .
CIRCULATION, 2003, 107 (09) :1247-1249
[9]   SEQUENCE HETEROGENEITY WITHIN THE HUMAN ALPHOID REPETITIVE DNA FAMILY [J].
DEVILEE, P ;
SLAGBOOM, P ;
CORNELISSE, CJ ;
PEARSON, PL .
NUCLEIC ACIDS RESEARCH, 1986, 14 (05) :2059-2073
[10]   Multiple organ engraftment by bone-marrow-derived myofibroblasts and fibroblasts in bone-marrow-tranplanted mice [J].
Direkze, NC ;
Forbes, SJ ;
Brittan, M ;
Hunt, T ;
Jeffery, R ;
Preston, SL ;
Poulsom, R ;
Hodivala-Dilke, K ;
Alison, MR ;
Wright, NA .
STEM CELLS, 2003, 21 (05) :514-520