Magnetically Induced Terahertz Birefringence and Chirality Manipulation in Transverse-Magnetized Metasurface

被引:37
作者
Fan, Fei [1 ]
Zhao, Dan [2 ]
Tan, Zhiyu [1 ]
Ji, Yunyun [2 ]
Cheng, Jierong [1 ]
Chang, Shengjiang [2 ]
机构
[1] Nankai Univ, Inst Modern Opt, Tianjin Key Lab Microscale Opt Informat Sci & Tec, Tianjin 300350, Peoples R China
[2] Tianjin Key Lab Optoelect Sensor & Sensing Networ, Tianjin 300350, Peoples R China
基金
中国国家自然科学基金;
关键词
chirality; magneto-optical devices; metasurfaces; photonic spin; terahertz; WAVES; INSB;
D O I
10.1002/adom.202101097
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Active manipulation of photonic spin state and optical chirality leads to some key applications, such as in multichannel communication, polarization-sensitive imaging, chiral spectroscopy, and chiral sensing. Magneto-optical materials have unique advantages in the intrinsic transmission and magnetic control of photonic chiral spin states. Here, a scheme for dynamic terahertz (THz) anisotropy and chirality manipulations in the transversely magnetized InSb and its hybrid magneto-optical metasurface structure is presented. A special transverse photonic spin state in the InSb and a transverse-longitudinal spin coupling effect in the hybrid magneto-optical metasurface are revealed by the eigenmode analysis and numerical simulations. The strong magnetic birefringence effect induced by this spin mode is demonstrated in the experiment. Moreover, the symmetry-breaking mechanism in this magneto-optical structure leads to strong intrinsic chirality and polarization conversion. The experimental results confirm the magnetically active manipulation of spin states and their asymmetric transmission in this hybrid magneto-optical metasurface, which achieve a polarization conversion rate of near 100% and an induced intrinsic chirality of over 15 dB. This work opens a new development for active THz polarization control and chiral manipulation in the magneto-optical microstructure.
引用
收藏
页数:9
相关论文
共 45 条
[1]   Giant tunable Faraday effect in a semiconductor magneto-plasma for broadband terahertz polarization optics [J].
Arikawa, Takashi ;
Wang, Xiangfeng ;
Belyanin, Alexey A. ;
Kono, Junichiro .
OPTICS EXPRESS, 2012, 20 (17) :19484-19492
[2]  
Armelles G, 2013, ADV OPT MATER, V1, P10, DOI [10.1002/adom.201200011, 10.1002/adom.201370002]
[3]   Three-dimensional Random Dielectric Colloid Metamaterial with Giant Isotropic Optical Activity [J].
Asadchy, V. S. ;
Guo, C. ;
Faniayeu, I. A. ;
Fan, S. .
LASER & PHOTONICS REVIEWS, 2020, 14 (10)
[4]  
Barron L. D., 2004, MOL LIGHT SCATTERING
[5]  
Belotelov VI, 2011, NAT NANOTECHNOL, V6, P370, DOI [10.1038/nnano.2011.54, 10.1038/NNANO.2011.54]
[6]   Terahertz laser frequency combs [J].
Burghoff, David ;
Kao, Tsung-Yu ;
Han, Ningren ;
Chan, Chun Wang Ivan ;
Cai, Xiaowei ;
Yang, Yang ;
Hayton, Darren J. ;
Gao, Jian-Rong ;
Reno, John L. ;
Hu, Qing .
NATURE PHOTONICS, 2014, 8 (06) :462-467
[7]   Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation [J].
Chin, Jessie Yao ;
Steinle, Tobias ;
Wehlus, Thomas ;
Dregely, Daniel ;
Weiss, Thomas ;
Belotelov, Vladimir I. ;
Stritzker, Bernd ;
Giessen, Harald .
NATURE COMMUNICATIONS, 2013, 4
[8]   Strong Broadband Terahertz Optical Activity through Control of the Blaschke Phase with Chiral Metasurfaces [J].
Cole, Michael A. ;
Chen, Wen-chen ;
Liu, Mingkai ;
Kruk, Sergey S. ;
Padilla, Willie J. ;
Shadrivov, Ilya V. ;
Powell, David A. .
PHYSICAL REVIEW APPLIED, 2017, 8 (01)
[9]   Electrically Programmable Terahertz Diatomic Metamolecules for Chiral Optical Control [J].
Cong, Longqing ;
Pitchappa, Prakash ;
Wang, Nan ;
Singh, Ranjan .
RESEARCH, 2019, 2019
[10]   Intrinsic Terahertz Plasmons and Magnetoplasmons in Large Scale Monolayer Graphene [J].
Crassee, I. ;
Orlita, M. ;
Potemski, M. ;
Walter, A. L. ;
Ostler, M. ;
Seyller, Th. ;
Gaponenko, I. ;
Chen, J. ;
Kuzmenko, A. B. .
NANO LETTERS, 2012, 12 (05) :2470-2474