N-type Cu2O doped activated carbon as catalyst for improving power generation of air cathode microbial fuel cells

被引:85
|
作者
Zhang, Xi [1 ]
Li, Kexun [1 ]
Yan, Pengyu [2 ]
Liu, Ziqi [1 ]
Pu, Liangtao [1 ]
机构
[1] Nankai Univ, Coll Environm Sci & Engn, Tianjin 300071, Peoples R China
[2] Tianjin Univ, Coll Environm Sci & Engn, Tianjin 300072, Peoples R China
关键词
Cuprous oxide; Electrodeposition; Oxygen reduction reaction; Catalytic activity; Microbial fuel cells; OXYGEN REDUCTION REACTION; REDUCED GRAPHENE OXIDE; PERFORMANCE; WATER; ELECTRODEPOSITION; NANOPARTICLES; OXIDATION; SITES; LAYER;
D O I
10.1016/j.biortech.2015.03.131
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
A novel n-type Cu2O doped activated carbon (AC) air cathode (Cu/AC) was developed as an alternative to Pt electrode for oxygen reduction in microbial fuel cells (MFCs). The maximum power density of MFCs using this novel air cathode was as high as 1390 +/- 76 mW m(-2), almost 59% higher than the bare AC air cathode. Specifically, the resistance including total resistance and charge transfer resistance significantly decreased comparing to the control. Tafel curve also showed the faster electro-transfer kinetics of Cu/AC with exchange current density of 1.03 x 10(-3) A cm(-2), which was 69% higher than the control. Ribbon-like Cu2O was deposited on the surface of AC with the mesopore surface area increasing. Cubic Cu2O crystals exclusively expose (111) planes with the interplanar crystal spacing of 2.48 angstrom, which was the dominate active sites for oxygen reduction reaction (ORR). N-type Cu2O with oxygen vacancies played crucial roles in electrochemical catalytic activity. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:299 / 304
页数:6
相关论文
共 50 条
  • [41] Fe/N-doped graphene with rod-like CNTs as an air-cathode catalyst in microbial fuel cells
    Wang, Dingling
    Ma, Zhaokun
    Xie, Yang'en
    Zhang, Man
    Zhao, Na
    Song, Huaihe
    RSC ADVANCES, 2018, 8 (03): : 1203 - 1209
  • [42] Immobilization of a Metal-Nitrogen-Carbon Catalyst on Activated Carbon with Enhanced Cathode Performance in Microbial Fuel Cells
    Yang, Wulin
    Logan, Bruce E.
    CHEMSUSCHEM, 2016, 9 (16) : 2226 - 2232
  • [43] High-Power Microbial Fuel Cells Based on a Carbon-Carbon Composite Air Cathode
    Zhang, Xiaoyuan
    Wang, Qiuying
    Tang, Cheng
    Wang, Hao-Fan
    Liang, Peng
    Huang, Xia
    Zhang, Qiang
    SMALL, 2020, 16 (15)
  • [44] Manganese-polypyrrole-carbon nanotube, a new oxygen reduction catalyst for air-cathode microbial fuel cells
    Lu, Min
    Guo, Lin
    Kharkwal, Shailesh
    Wu, Hua'nan
    Ng, How Yong
    Li, Sam Fong Yau
    JOURNAL OF POWER SOURCES, 2013, 221 : 381 - 386
  • [45] In situ generation of inverse spinel CoFe2O4 nanoparticles onto nitrogen-doped activated carbon for an effective cathode electrocatalyst of microbial fuel cells
    Huang, Qiangsheng
    Zhou, Peijiang
    Yang, Hua
    Zhu, Longlong
    Wu, Huangying
    CHEMICAL ENGINEERING JOURNAL, 2017, 325 : 466 - 473
  • [46] Catalysis Kinetics and Porous Analysis of Rolling Activated Carbon-PTFE Air-Cathode in Microbial Fuel Cells
    Dong, Heng
    Yu, Hongbing
    Wang, Xin
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2012, 46 (23) : 13009 - 13015
  • [47] KOH activated N-doped novel carbon aerogel as efficient metal-free oxygen reduction catalyst for microbial fuel cells
    Tian, Xiaoyu
    Zhou, Minghua
    Tan, Chaolin
    Li, Ming
    Liang, Liang
    Li, Kerui
    Su, Pei
    CHEMICAL ENGINEERING JOURNAL, 2018, 348 : 775 - 785
  • [48] Influence of Micropore and Mesoporous in Activated Carbon Air-cathode Catalysts on Oxygen Reduction Reaction in Microbial Fuel Cells
    Liu, Yi
    Li, Kexun
    Ge, Baochao
    Pu, Liangtao
    Liu, Ziqi
    ELECTROCHIMICA ACTA, 2016, 214 : 110 - 118
  • [49] Use of Pyrolyzed Iron Ethylenediaminetetraacetic Acid Modified Activated Carbon as Air-Cathode Catalyst in Microbial Fuel Cells
    Xia, Xue
    Zhang, Fang
    Zhang, Xiaoyuan
    Liang, Peng
    Huang, Xia
    Logan, Bruce E.
    ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (16) : 7862 - 7866
  • [50] Electricity generation from banana peels in an alkaline fuel cell with a Cu2O-Cu modified activated carbon cathode
    Liu, Peng
    Liu, Xianhua
    Dong, Feng
    Lin, Qingxia
    Tong, Yindong
    Li, Yang
    Zhang, Pingping
    SCIENCE OF THE TOTAL ENVIRONMENT, 2018, 631-632 : 849 - 856