N-type Cu2O doped activated carbon as catalyst for improving power generation of air cathode microbial fuel cells

被引:85
|
作者
Zhang, Xi [1 ]
Li, Kexun [1 ]
Yan, Pengyu [2 ]
Liu, Ziqi [1 ]
Pu, Liangtao [1 ]
机构
[1] Nankai Univ, Coll Environm Sci & Engn, Tianjin 300071, Peoples R China
[2] Tianjin Univ, Coll Environm Sci & Engn, Tianjin 300072, Peoples R China
关键词
Cuprous oxide; Electrodeposition; Oxygen reduction reaction; Catalytic activity; Microbial fuel cells; OXYGEN REDUCTION REACTION; REDUCED GRAPHENE OXIDE; PERFORMANCE; WATER; ELECTRODEPOSITION; NANOPARTICLES; OXIDATION; SITES; LAYER;
D O I
10.1016/j.biortech.2015.03.131
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
A novel n-type Cu2O doped activated carbon (AC) air cathode (Cu/AC) was developed as an alternative to Pt electrode for oxygen reduction in microbial fuel cells (MFCs). The maximum power density of MFCs using this novel air cathode was as high as 1390 +/- 76 mW m(-2), almost 59% higher than the bare AC air cathode. Specifically, the resistance including total resistance and charge transfer resistance significantly decreased comparing to the control. Tafel curve also showed the faster electro-transfer kinetics of Cu/AC with exchange current density of 1.03 x 10(-3) A cm(-2), which was 69% higher than the control. Ribbon-like Cu2O was deposited on the surface of AC with the mesopore surface area increasing. Cubic Cu2O crystals exclusively expose (111) planes with the interplanar crystal spacing of 2.48 angstrom, which was the dominate active sites for oxygen reduction reaction (ORR). N-type Cu2O with oxygen vacancies played crucial roles in electrochemical catalytic activity. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:299 / 304
页数:6
相关论文
共 50 条
  • [1] The excellent performance and mechanism of activated carbon air cathode doped with different type of cobalt for microbial fuel cells
    Liu, Ziqi
    Ge, Baochao
    Li, Kexun
    Zhang, Xi
    Huang, Kan
    FUEL, 2016, 176 : 173 - 180
  • [2] Carnation-like MnO2 modified activated carbon air cathode improve power generation in microbial fuel cells
    Zhang, Peng
    Li, Kexun
    Liu, Xianhua
    JOURNAL OF POWER SOURCES, 2014, 264 : 248 - 253
  • [3] Silver electrodeposition on the activated carbon air cathode for performance improvement in microbial fuel cells
    Pu, Liangtao
    Li, Kexun
    Chen, Zhihao
    Zhang, Peng
    Zhang, Xi
    Fu, Zhou
    JOURNAL OF POWER SOURCES, 2014, 268 : 476 - 481
  • [4] Electricity generation and microbial community of single-chamber microbial fuel cells in response to Cu2O nanoparticles/reduced graphene oxide as cathode catalyst
    Xin, Shuaishuai
    Shen, Jianguo
    Liu, Guocheng
    Chen, Qinghua
    Xiao, Zhou
    Zhang, Guodong
    Xin, Yanjun
    CHEMICAL ENGINEERING JOURNAL, 2020, 380
  • [5] Reduced graphene oxide modified activated carbon for improving power generation of air-cathode microbial fuel cells
    Yang, Yang
    Liu, Tianyu
    Wang, Hanyu
    Zhu, Xun
    Ye, Dingding
    Liao, Qiang
    Liu, Ke
    Chen, Shaowei
    Li, Yat
    JOURNAL OF MATERIALS RESEARCH, 2018, 33 (09) : 1279 - 1287
  • [6] One-Step Synthesis of Hydrangea-like Cu2O@N-doped Activated Carbon as Air Cathode Catalyst in Microbial Fuel Cell
    Yang, Tingting
    Li, Kexun
    Liu, Ziqi
    Pu, Liangtao
    Zhang, Xi
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (04) : F270 - F275
  • [7] Nitrogenous mesoporous carbon coated with Co/Cu nanoparticles modified activated carbon as air cathode catalyst for microbial fuel cell
    Liang, Bolong
    Ren, Chao
    Zhao, Yubo
    Li, Kexun
    Lv, Cuicui
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2020, 860
  • [8] Activated carbon-supported multi-doped graphene as high-efficient catalyst to modify air cathode in microbial fuel cells
    Lv, Cuicui
    Liang, Bolong
    Zhong, Ming
    Li, Kexun
    Qi, Yongying
    ELECTROCHIMICA ACTA, 2019, 304 : 360 - 369
  • [9] Iron-nitrogen-activated carbon as cathode catalyst to improve the power generation of single-chamber air-cathode microbial fuel cells
    Pan, Yajun
    Mo, Xiaoping
    Li, Kexun
    Pu, Liangtao
    Liu, Di
    Yang, Tingting
    BIORESOURCE TECHNOLOGY, 2016, 206 : 285 - 289
  • [10] High electricity generation and COD removal from cattle wastewater in microbial fuel cells with 3D air cathode employed non-precious Cu2O/reduced graphene oxide as cathode catalyst
    Xin, Shuaishuai
    Shen, Jianguo
    Liu, Guocheng
    Chen, Qinghua
    Xiao, Zhou
    Zhang, Guodong
    Xin, Yanjun
    ENERGY, 2020, 196