Secret Key Generation with One Communicator and a One-Shot Converse via Hypercontractivity

被引:0
作者
Liu, Jingbo [1 ]
Cuff, Paul [1 ]
Verdu, Sergio [1 ]
机构
[1] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA
来源
2015 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT) | 2015年
关键词
COMMON RANDOMNESS; INFORMATION-THEORY; CRYPTOGRAPHY; AGREEMENT; CAPACITY;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A new model of multi-party secret key agreement is proposed, in which one terminal called the communicator can transmit public messages to other terminals before all terminals agree on a secret key. A single-letter characterization of the achievable region is derived in the stationary memoryless case. The new model generalizes some other (old and new) models of key agreement. In particular, key generation with an omniscient helper is the special case where the communicator knows all sources, for which we derive a zero-rate one-shot converse for the secret key per bit of communication.
引用
收藏
页码:710 / 714
页数:5
相关论文
共 18 条
[1]   Common randomness in information theory and cryptography - Part II: CR capacity [J].
Ahlswede, R ;
Csiszar, I .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (01) :225-240
[2]   COMMON RANDOMNESS IN INFORMATION-THEORY AND CRYPTOGRAPHY .1. SECRET SHARING [J].
AHLSWEDE, R ;
CSISZAR, I .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1993, 39 (04) :1121-1132
[3]   BROADCAST CHANNELS [J].
COVER, TM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1972, 18 (01) :2-+
[4]   Secrecy capacities for multiple terminals [J].
Csiszár, I ;
Narayan, P .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (12) :3047-3061
[5]   Common randomness and secret key generation with a helper [J].
Csiszár, I ;
Narayan, P .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (02) :344-366
[6]   Distributed Channel Synthesis [J].
Cuff, Paul .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (11) :7071-7096
[7]  
Han T. S., 2003, Information Spectrum Methods in Information Theory
[8]   General nonasymptotic and asymptotic formulas in channel resolvability and identification capacity and their application to the wiretap channel [J].
Hayashi, M .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) :1562-1575
[9]  
Hayashi M, 2014, IEEE INT SYMP INFO, P1136, DOI 10.1109/ISIT.2014.6875010
[10]  
MAURER UM, 1993, IEEE T INFORM THEORY, V39, P733, DOI 10.1109/18.256484