A dynamic model of supercritical boiler-turbine unit based on immune genetic algorithm parameter identification

被引:0
作者
Hau, Guolian [1 ]
Tang, Zhiyan [1 ]
Gong, Linjuan [1 ]
Su, Huilin [1 ]
Hu, Bo [2 ]
Zhao, Yuanzhu [2 ]
机构
[1] North China Elect Power Univ, Sch Control & Comp Engn, Beijing 102206, Peoples R China
[2] State Grid Liaoning Elect Power Supply Co Ltd, Shenyang 110004, Peoples R China
来源
PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021) | 2021年
关键词
Supercritical once-through boiler-turbine unit; Immune genetic algorithm (IGA); Mathematical model; Parameter identification; ONCE-THROUGH BOILER; SYSTEM;
D O I
10.1109/CCDC52312.2021.9601729
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In recent years, with the development of coal-fired units towards large capacity and high parameters, the position of supercritical once-through boiler unit has become more prominent. In this paper, a nonlinear mathematical model of the supercritical boiler unit is established through a series of assumptions and formula derivation, and then the parameters are identified through regression analysis and immune genetic algorithm (IGA) combined with the operation data of a 1000MW supercritical unit. The inputs of the model are fuel command, feed water and turbine governor valve position while the outputs are turbine power, main steam pressure and steam enthalpy at separator outlet. The simulation results show that the model can characterize the dynamic characteristics of the unit and has acceptable accuracy.
引用
收藏
页码:6185 / 6190
页数:6
相关论文
共 50 条
[41]   Parameter Identification of Nonlinear Excitation System Based on Improved Adaptive Genetic Algorithm [J].
Qin, Xuhua ;
Lin, Hai ;
Yu, Dafei ;
Zhou, Shanshan .
10TH ASIA-PACIFIC POWER AND ENERGY ENGINEERING CONFERENCE (APPEEC 2018), 2018, :897-902
[42]   Parameter identification based on genetic algorithm for PI controller in wireless sensor networks [J].
Liu Ming ;
Liu Rong ;
Xu Yunqiang ;
Zheng Shijue .
PROCEEDINGS OF THE FIRST INTERNATIONAL SYMPOSIUM ON TEST AUTOMATION & INSTRUMENTATION, VOLS 1 - 3, 2006, :87-90
[43]   Dynamic Parameter Identification of Collaborative Robot Based on WLS-RWPSO Algorithm [J].
Tang, Minan ;
Yan, Yaguang ;
An, Bo ;
Wang, Wenjuan ;
Zhang, Yaqi .
MACHINES, 2023, 11 (02)
[44]   An algorithm of parameter optimization for generalized T-S model based on genetic algorithm [J].
Li, HS ;
Mao, JQ ;
Dai, JY .
2001 INTERNATIONAL CONFERENCES ON INFO-TECH AND INFO-NET PROCEEDINGS, CONFERENCE A-G: INFO-TECH & INFO-NET: A KEY TO BETTER LIFE, 2001, :D136-D141
[45]   Parameter identification of a nonlinear model of hydraulic turbine governing system with an elastic water hammer based on a modified gravitational search algorithm [J].
Li, Chaoshun ;
Chang, Li ;
Huang, Zhengjun ;
Liu, Yi ;
Zhang, Nan .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2016, 50 :177-191
[46]   Research on the parameter identification of LuGre tire model based on genetic algorithms [J].
Tan, Derong ;
Wang, Yanyang ;
Zhang, Li .
PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND KNOWLEDGE ENGINEERING (ISKE 2007), 2007,
[47]   Parameter Identification of Lithium Battery Model Based on Simulated Annealing Algorithm [J].
Luo Y. ;
Qi P. ;
Kan Y. ;
Li P. ;
Liu L. ;
Cui H. .
Qiche Gongcheng/Automotive Engineering, 2018, 40 (12) :1418-1425
[48]   Genetic Algorithm and Cuckoo Search Hybrid Technique for Parameter Identification of Fermentation Process Model [J].
Angelova M. ;
Vassilev P. ;
Pencheva T. .
International Journal Bioautomation, 2020, 24 (03) :277-288
[49]   Online model parameter identification for supercapacitor based on weighting bat algorithm [J].
Sun, Geng ;
Liu, Yanheng ;
Chai, Ruizhi ;
Mei, Fang ;
Zhang, Ying .
AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2018, 87 :113-118
[50]   Parameter Identification of a Stress Relaxation Model Based on Differential Evolution Algorithm [J].
Zhang, Wei-wei ;
Xu, Hong .
MATERIALS, MECHANICAL AND MANUFACTURING ENGINEERING, 2014, 842 :482-485