Ionic Conduction Mechanism and Design of Metal-Organic Framework Based Quasi-Solid-State Electrolytes

被引:75
作者
Hou, Tingzheng [1 ,2 ]
Xu, Wentao [3 ]
Pei, Xiaokun [3 ]
Jiang, Lu [1 ,5 ]
Yaghi, Omar M. [3 ]
Persson, Kristin A. [1 ,4 ]
机构
[1] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Energy Technol Area, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[4] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA
[5] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
关键词
TEMPERATURE; MORPHOLOGY; TRANSPORT; LIPF6;
D O I
10.1021/jacs.2c03710
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report the theoretical and experimental investigation of two polyoxometalate-based metal-organic frameworks (MOFs), [(MnMo6)(2)(TFPM)](imine) and [(AlMo6)(2)(TFPM)](imine), as quasi-solid-state electrolytes. Classical molecular dynamics coupled with quantum chemistry and grand canonical Monte Carlo are utilized to model the corresponding diffusion and ionic conduction in the two materials. Using different approximate levels of ion diffusion behavior, the primary ionic conduction mechanism was identified as solvent-assisted hopping (> 77%). Detailed static and dynamic solvation structures were obtained to interpret Li+ motion with high spatial and temporal resolution. A rationally designed noninterpenetrating MOF-688(one-fold) material is proposed to achieve 6-8 times better performance (1.6-1.7 mS cm(-1)) than the current state-of-the-art (0.19-0.35 mS cm(-1)).
引用
收藏
页码:13446 / 13450
页数:5
相关论文
共 40 条
[1]   Uncharted Waters: Super-Concentrated Electrolytes [J].
Borodin, Oleg ;
Self, Julian ;
Persson, Kristin A. ;
Wang, Chunsheng ;
Xu, Kang .
JOULE, 2020, 4 (01) :69-100
[2]   Transferring Lithium Ions in the Nanochannels of Flexible Metal-Organic Frameworks Featuring Superchaotropic Metallacarborane Guests: Mechanism of Ionic Conductivity at Atomic Resolution [J].
Brus, Jiri ;
Czernek, Jiri ;
Urbanova, Martina ;
Rohlicek, Jan ;
Plechacek, Tomas .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (42) :47447-47456
[3]   The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons [J].
Chen, Renjie ;
Qu, Wenjie ;
Guo, Xing ;
Li, Li ;
Wu, Feng .
MATERIALS HORIZONS, 2016, 3 (06) :487-516
[4]   Recent Advances in Energy Chemistry between Solid-State Electrolyte and Safe Lithium-Metal Anodes [J].
Cheng, Xin-Bing ;
Zhao, Chen-Zi ;
Yao, Yu-Xing ;
Liu, He ;
Zhang, Qiang .
CHEM, 2019, 5 (01) :74-96
[5]   How to Measure a Reliable Ionic Conductivity? The Stack Pressure Dilemma of Microcrystalline Sulfide-Based Solid Electrolytes [J].
Cronau, Marvin ;
Szabo, Marvin ;
Konig, Christoph ;
Wassermann, Tobias Burghardt ;
Roling, Bernhard .
ACS ENERGY LETTERS, 2021, 6 (09) :3072-3077
[6]   Change of conductivity with salt content, solvent composition, and temperature for electrolytes of LiPF6 in ethylene carbonate-ethyl methyl carbonate [J].
Ding, MS ;
Xu, K ;
Zhang, SS ;
Amine, K ;
Henriksen, GL ;
Jow, TR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (10) :A1196-A1204
[7]  
Dzubak AL, 2012, NAT CHEM, V4, P810, DOI [10.1038/NCHEM.1432, 10.1038/nchem.1432]
[8]   Recent Progress of the Solid-State Electrolytes for High-Energy Metal-Based Batteries [J].
Fan, Lei ;
Wei, Shuya ;
Li, Siyuan ;
Li, Qi ;
Lu, Yingying .
ADVANCED ENERGY MATERIALS, 2018, 8 (11)
[9]   Ion Transport and the True Transference Number in Nonaqueous Polyelectrolyte Solutions for Lithium Ion Batteries [J].
Fong, Kara D. ;
Self, Julian ;
Diederichsen, Kyle M. ;
Wood, Brandon M. ;
McCloskey, Bryan D. ;
Persson, Kristin A. .
ACS CENTRAL SCIENCE, 2019, 5 (07) :1250-1260
[10]  
Frenkel D., 2001, UNDERSTANDING MOL SI, V1, DOI 10.1063/1.881812