Numerical modeling of cylindrically symmetric nonlinear self-focusing using an adaptive fast Hankel split-step method

被引:18
作者
Banerjee, PP [1 ]
Nehmetallah, G [1 ]
Chatterjee, MR [1 ]
机构
[1] Univ Dayton, Dept Elect & Comp Engn, Dayton, OH 45469 USA
关键词
Hankel transform; self-focusing; Kerr effect;
D O I
10.1016/j.optcom.2004.12.048
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a novel technique to numerically solve beam propagation problems based on the paraxial and nonparaxial scalar nonlinear Schrodinger (NLS) equation in two transverse dimensions with cylindrical symmetry. Using fast algorithms for Hankel transforms along with adaptive longitudinal stepping and transverse grid management in a symmetrized split-step technique, it is possible to accurately track a beam much closer to its physical collapse due to selffocusing for the paraxial NLS than other existing methods, notably the fast Fourier transform-based standard split-step technique. For the nonparaxial NLS, the adaptive fast Hankel transform-based split-step method with an adaptive nonparaxiality parameter yields results comparable to the more rigorous vector nonlinear wave equation. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:293 / 300
页数:8
相关论文
共 23 条
[21]   NON-LINEAR SCHRODINGER-EQUATIONS AND SHARP INTERPOLATION ESTIMATES [J].
WEINSTEIN, MI .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1983, 87 (04) :567-576
[22]   Quasi-discrete Hankel transform [J].
Yu, L ;
Huang, MC ;
Chen, MZ ;
Chen, WZ ;
Huang, WD ;
Zhu, ZZ .
OPTICS LETTERS, 1998, 23 (06) :409-411
[23]  
ZAKHAROV VE, 1972, SOV PHYS JETP-USSR, V34, P62