ZIF-8@MWCNT-derived carbon composite as electrode of high performance for supercapacitor

被引:143
作者
Wang, Yanfang [1 ,2 ,3 ,4 ]
Chen, Bingwei [1 ,2 ,3 ,4 ]
Zhang, Yi [3 ,4 ]
Fu, Lijun [3 ,4 ]
Zhu, Yusong [3 ,4 ]
Zhang, Lixin [1 ,2 ]
Wu, Yuping [1 ,2 ,3 ,4 ]
机构
[1] Fudan Univ, Dept Chem, New Energy & Mat Lab, Shanghai 200433, Peoples R China
[2] Fudan Univ, Shanghai Key Lab Mol Catalysis & Innovat Mat, Shanghai 200433, Peoples R China
[3] Nanjing Tech Univ, Coll Energy, Nanjing 211816, Jiangsu, Peoples R China
[4] Nanjing Tech Univ, Inst Electrochem Energy Storage, Nanjing 211816, Jiangsu, Peoples R China
关键词
supercapacitor; zeolitic imidazolate framework; ZIF-8; porous carbon; METAL-ORGANIC FRAMEWORKS; ZEOLITIC IMIDAZOLATE FRAMEWORK; RECHARGEABLE LITHIUM BATTERY; POROUS CARBON; DIRECT CARBONIZATION; NANOPOROUS CARBONS; FACILE SYNTHESIS; ENERGY-STORAGE; SURFACE-AREA; ZIF-8;
D O I
10.1016/j.electacta.2016.07.019
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Carbon materials from zeolitic imidazolate framework (ZIF) present poor electrochemical performance as electrode materials for supercapacitors. In this work, well-intergrown ZIF nanocystals are strung on MWCNTs to form necklace architecture. After carbonization and chemical etching, porous carbons with necklace architecture and proper hierarchical micro-mesoporous structure were obtained. It exhibits excellent electrochemical performance as electrode material for supercapacitor in 1 M H2SO4 solution such as high specific capacitance up to 326 F.g(-1) at 1 A.g(-1), good rate capability and excellent cycling stability of 99.7% capacitance retention after 10000 cycles. The main reasons are due to the increased surface area, the improved electrical conductivity, and the combination of micro-and meso-porous structure. This provides another promising way to design porous carbons from ZIF materials for supercapacitors. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:260 / 269
页数:10
相关论文
共 66 条
[1]   Preparation and hydrogen storage capacity of templated and activated carbons nanocast from commercially available zeolitic imidazolate framework [J].
Almasoudi, A. ;
Mokaya, R. .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (01) :146-152
[2]   From assembled metal-organic framework nanoparticles to hierarchically porous carbon for electrochemical energy storage [J].
Amali, Arlin Jose ;
Sun, Jian-Ke ;
Xu, Qiang .
CHEMICAL COMMUNICATIONS, 2014, 50 (13) :1519-1522
[3]  
An KH, 2001, ADV MATER, V13, P497, DOI 10.1002/1521-4095(200104)13:7<497::AID-ADMA497>3.0.CO
[4]  
2-H
[5]   Control of Pore Size and Functionality in Isoreticular Zeolitic Imidazolate Frameworks and their Carbon Dioxide Selective Capture Properties [J].
Banerjee, Rahul ;
Furukawa, Hiroyasu ;
Britt, David ;
Knobler, Carolyn ;
O'Keeffe, Michael ;
Yaghi, Omar M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (11) :3875-+
[6]  
Brad A.J., 2000, Electrochemical Methods: Fundamentals and Applications, V2nd
[7]   Polyaniline-deposited porous carbon electrode for supercapacitor [J].
Chen, WC ;
Wen, TC ;
Teng, HS .
ELECTROCHIMICA ACTA, 2003, 48 (06) :641-649
[8]  
Chmiola J, 2006, SCIENCE, V313, P1760, DOI 10.1126/science/1132195
[9]   Rapid Room-Temperature Synthesis and Characterization of Nanocrystals of a Prototypical Zeolitic Imidazolate Framework [J].
Cravillon, Janosch ;
Muenzer, Simon ;
Lohmeier, Sven-Jare ;
Feldhoff, Armin ;
Huber, Klaus ;
Wiebcke, Michael .
CHEMISTRY OF MATERIALS, 2009, 21 (08) :1410-1412
[10]   Hybrid energy storage: the merging of battery and supercapacitor chemistries [J].
Dubal, D. P. ;
Ayyad, O. ;
Ruiz, V. ;
Gomez-Romero, P. .
CHEMICAL SOCIETY REVIEWS, 2015, 44 (07) :1777-1790