Optical solitons with complex Ginzburg-Landau equation

被引:147
|
作者
Mirzazadeh, Mohammad [1 ]
Ekici, Mehmet [2 ]
Sonmezoglu, Abdullah [2 ]
Eslami, Mostafa [3 ]
Zhou, Qin [4 ]
Kara, Abdul H. [5 ]
Milovic, Daniela [6 ]
Majid, Fayequa B. [7 ]
Biswas, Anjan [8 ,9 ]
Belic, Milivoj [10 ]
机构
[1] Univ Guilan, Fac Math Sci, Dept Math, Rasht, Iran
[2] Bozok Univ, Fac Sci & Arts, Dept Math, TR-66100 Yozgat, Turkey
[3] Univ Mazandaran, Fac Math Sci, Dept Math, Babol Sar, Iran
[4] Wuhan Donghu Univ, Sch Elect & Informat Engn, Wuhan 430212, Peoples R China
[5] Univ Witwatersrand, Sch Math, Ctr Differential Equat Continuum Mech & Applicat, ZA-2050 Johannesburg, South Africa
[6] Univ Nis, Dept Telecommun, Fac Elect Engn, Aleksandra Medvedeva 14, Nish 18000, Serbia
[7] Alabama A&M Univ, Dept Phys Chem & Math, Normal, AL 35811 USA
[8] Delaware State Univ, Dept Math Sci, Dover, DE 19901 USA
[9] King Abdulaziz Univ, Dept Math, Fac Sci, Jeddah 21589, Saudi Arabia
[10] Texas A&M Univ Qatar, Sci Program, POB 23874, Doha, Qatar
关键词
Solitons; Integrability; Constraints; PARABOLIC LAW NONLINEARITY; SINE-COSINE METHOD; WAVE SOLUTIONS; PERIODIC-SOLUTIONS; METAMATERIALS; KERR;
D O I
10.1007/s11071-016-2810-5
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The paper revisits in a systematic way the complex Ginzburg-Landau equation with Kerr and power law nonlinearities. Several integration techniques are applied to retrieve various soliton solutions to the model for both forms of nonlinearity. Bright, dark as well as singular soliton solutions are obtained. Several other solutions such as periodic singular solutions and plane waves emerge as a by-product of integration algorithms. Constraint conditions hold all of these solutions in place. The numerical simulations for bright soliton solutions are given for Kerr and power law.
引用
收藏
页码:1979 / 2016
页数:38
相关论文
共 50 条
  • [1] Optical solitons with complex Ginzburg-Landau equation by modified simple equation method
    Arnous, Ahmed H.
    Seadawy, Aly R.
    Alqahtani, Rubayyi T.
    Biswas, Anjan
    OPTIK, 2017, 144 : 475 - 480
  • [2] Optical solitons with differential group delay for complex Ginzburg-Landau equation
    Yildirim, Yakup
    Biswas, Anjan
    Jawad, Anwar Ja'afar Mohamad
    Ekici, Mehmet
    Zhou, Qin
    Alzahrani, Abdullah Kamis
    Belic, Milivoj R.
    RESULTS IN PHYSICS, 2020, 16
  • [3] Optical solitons with complex Ginzburg-Landau equation having three nonlinear forms
    Arshed, Ima
    Biswas, Anjan
    Mallawi, Fouad
    Belic, Milivoj R.
    PHYSICS LETTERS A, 2019, 383 (36)
  • [4] Optical solitons with complex Ginzburg–Landau equation
    Mohammad Mirzazadeh
    Mehmet Ekici
    Abdullah Sonmezoglu
    Mostafa Eslami
    Qin Zhou
    Abdul H. Kara
    Daniela Milovic
    Fayequa B. Majid
    Anjan Biswas
    Milivoj Belić
    Nonlinear Dynamics, 2016, 85 : 1979 - 2016
  • [5] Dissipative solitons for generalizations of the cubic complex Ginzburg-Landau equation
    Carvalho, M., I
    Facao, M.
    PHYSICAL REVIEW E, 2019, 100 (03)
  • [6] Optical solitons to the Ginzburg-Landau equation including the parabolic nonlinearity
    Hosseini, K.
    Mirzazadeh, M.
    Akinyemi, L.
    Baleanu, D.
    Salahshour, S.
    OPTICAL AND QUANTUM ELECTRONICS, 2022, 54 (10)
  • [7] Optical Solitons with the Complex Ginzburg-Landau Equation with Kudryashov's Law of Refractive Index
    Arnous, Ahmed H.
    Moraru, Luminita
    MATHEMATICS, 2022, 10 (19)
  • [8] Dark-singular combo optical solitons with fractional complex Ginzburg-Landau equation
    Abdou, M. A.
    Soliman, A. A.
    Biswas, Anjan
    Ekici, Mehmet
    Zhou, Qin
    Moshokoa, Seithuti P.
    OPTIK, 2018, 171 : 463 - 467
  • [9] New computational optical solitons for generalized complex Ginzburg-Landau equation by collective variables
    Raza, Nauman
    Jannat, Nahal
    Gomez-Aguilar, J. F.
    Perez-Careta, Eduardo
    MODERN PHYSICS LETTERS B, 2022, 36 (28N29):
  • [10] Cubic-quartic optical solitons of the complex Ginzburg-Landau equation: A novel approach
    Arnous, Ahmed H.
    Nofal, Taher A.
    Biswas, Anjan
    Yildirim, Yakup
    Asiri, Asim
    NONLINEAR DYNAMICS, 2023, 111 (21) : 20201 - 20216