On the steady flow of compressible viscous fluid and its stability with respect to initial disturbance

被引:46
作者
Shibata, Y [1 ]
Tanaka, K [1 ]
机构
[1] Waseda Univ, Sch Sci & Engn, Dept Math Sci, Adv Res Inst Sci & Engn, Tokyo 1698555, Japan
关键词
compressible fluid; Navier-Stokes equation; stationary solution; stability;
D O I
10.2969/jmsj/1191419003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a compressible viscous fluid effected by general form external force in R-3. In part 1, an analysis of the linearized problem based on the weighted-L-2 method implies a condition on the external force for the existence and some regularities of the steady flow. In part 2, we study the stability of the steady flow with respect to the initial disturbance. What we proved is: if H-3-norm of the initial disturbance is small enough, then the solution to the non-stationary problem exists uniquely and globally in, time.
引用
收藏
页码:797 / 826
页数:30
相关论文
共 21 条
[1]  
Benabidallah R., 1998, Annales de la Faculte des Sciences de Toulouse, Mathematiques, V7, P599, DOI 10.5802/afst.912
[2]  
Benabidallah R, 1998, J MATH KYOTO U, V38, P1
[3]   Global existence in critical spaces for compressible Navier-Stokes equations [J].
Danchin, R .
INVENTIONES MATHEMATICAE, 2000, 141 (03) :579-614
[4]  
DANCHIN R, IN PRESS COMM PARTIA
[5]   DECAY-ESTIMATES FOR THE COMPRESSIBLE NAVIER-STOKES EQUATIONS IN UNBOUNDED-DOMAINS [J].
DECKELNICK, K .
MATHEMATISCHE ZEITSCHRIFT, 1992, 209 (01) :115-130
[6]   L(2) DECAY FOR THE COMPRESSIBLE NAVIER-STOKES EQUATIONS IN UNBOUNDED-DOMAINS [J].
DECKELNICK, K .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1993, 18 (9-10) :1445-1476
[7]   Large-time behaviour of solutions to the Navier-Stokes equations of compressible flow [J].
Feireisl, E ;
Petzeltová, H .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1999, 150 (01) :77-96
[8]   MULTIDIMENSIONAL DIFFUSION WAVES FOR THE NAVIER-STOKES EQUATIONS OF COMPRESSIBLE FLOW [J].
HOFF, D ;
ZUMBRUN, K .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1995, 44 (02) :603-676
[9]  
KAWASHITA M, 2000, SURIKAISEKIKENKYUSHO, P100
[10]  
Kobayashi T, 2000, PROG NONLINEAR DIFFE, V42, P151