Locally strongly convex hypersurfaces with constant affine mean curvature

被引:8
作者
Jia, F [1 ]
Li, AM [1 ]
机构
[1] Sichuan Univ, Dept Math, Chengdu 610064, Sichuan, Peoples R China
关键词
Bernstein property; affine mean curvature;
D O I
10.1016/j.difgeo.2004.10.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let x : M -> A(n+1) be a locally strongly convex hypersurface, given by a strictly convex function x(n+1) = f(x(1), ... , x(n)) defined in a convex domain Omega subset of A(n). We consider the Riemannian metric G(#) on M, defined by G(#) = Sigma partial derivative(2)f / partial derivative x(i)partial derivative x(j) dx(i) dx(i). In this paper we prove that if M is a locally strongly convex surface with constant affine mean curvature and if M is complete with respect to the metric G(#), then M must be an elliptic paraboloid. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:199 / 214
页数:16
相关论文
共 6 条
  • [1] Calabi E., 1958, MICH MATH J, V5, P105, DOI 10.1307/mmj/1028998055
  • [2] CHERN SS, 1978, P JAP US SEM TOK 197, P17
  • [3] Li A.M., 1993, GLOBAL AFFINE DIFFER
  • [4] A bernstein property of affine maximal hypersurfaces
    Li, AM
    Jia, F
    [J]. ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2003, 23 (04) : 359 - 372
  • [5] Euclidean complete affine surfaces with constant affine mean curvature
    Li, AM
    Jia, F
    [J]. ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2003, 23 (03) : 283 - 304
  • [6] Pogorelov A., 1978, MINKOWSKI MULTIDIMEN