Real-Time Target Detection Method Based on Lightweight Convolutional Neural Network

被引:63
|
作者
Yun, Juntong [1 ,2 ]
Jiang, Du [1 ,3 ,4 ]
Liu, Ying [2 ,4 ]
Sun, Ying [1 ,3 ,4 ]
Tao, Bo [1 ,3 ,4 ]
Kong, Jianyi [2 ,3 ,4 ]
Tian, Jinrong [1 ,2 ]
Tong, Xiliang [2 ,4 ]
Xu, Manman [1 ,2 ,3 ]
Fang, Zifan [5 ]
机构
[1] Wuhan Univ Sci & Technol, Key Lab Met Equipment & Control Technol, Minist Educ, Wuhan, Peoples R China
[2] Wuhan Univ Sci & Technol, Res Ctr Biomimet Robot & Intelligent Measurement &, Wuhan, Peoples R China
[3] Wuhan Univ Sci & Technol, Hubei Key Lab Mech Transmiss & Mfg Engn, Wuhan, Peoples R China
[4] Wuhan Univ Sci & Technol, Precis Mfg Res Inst, Wuhan, Peoples R China
[5] China Three Gorges Univ, Hubei Key Lab Hydroelect Machinery Design & Mainte, Yichang, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep learning; target detection; MobileNets-SSD; depthwise separable convolution; residual module; GESTURE RECOGNITION;
D O I
10.3389/fbioe.2022.861286
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The continuous development of deep learning improves target detection technology day by day. The current research focuses on improving the accuracy of target detection technology, resulting in the target detection model being too large. The number of parameters and detection speed of the target detection model are very important for the practical application of target detection technology in embedded systems. This article proposed a real-time target detection method based on a lightweight convolutional neural network to reduce the number of model parameters and improve the detection speed. In this article, the depthwise separable residual module is constructed by combining depthwise separable convolution and non-bottleneck-free residual module, and the depthwise separable residual module and depthwise separable convolution structure are used to replace the VGG backbone network in the SSD network for feature extraction of the target detection model to reduce parameter quantity and improve detection speed. At the same time, the convolution kernels of 1 x 3 and 3 x 1 are used to replace the standard convolution of 3 x 3 by adding the convolution kernels of 1 x 3 and 3 x 1, respectively, to obtain multiple detection feature graphs corresponding to SSD, and the real-time target detection model based on a lightweight convolutional neural network is established by integrating the information of multiple detection feature graphs. This article used the self-built target detection dataset in complex scenes for comparative experiments; the experimental results verify the effectiveness and superiority of the proposed method. The model is tested on video to verify the real-time performance of the model, and the model is deployed on the Android platform to verify the scalability of the model.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Infrared Small Target Detection Enhancement Using a Lightweight Convolutional Neural Network
    Gupta, Mridul
    Chan, Jonathan
    Krouss, Mitchell
    Furlich, Greg
    Martens, Paul
    Chan, Moses W.
    Comer, Mary L.
    Delp, Edward J.
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [22] An improved SSD method for infrared target detection based on convolutional neural network
    Liu, Gang
    Cao, Zixuan
    Liu, Sen
    Song, Bin
    Liu, Zhonghua
    JOURNAL OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING, 2022, 22 (04) : 1393 - 1408
  • [23] Detection of Aortic Valve from Echocardiography in Real-Time Using Convolutional Neural Network
    Nizar, Muhammad Hanif bin Ahmad
    Chan, Chow Khuen
    Yusof, Ahmad Khairuddin Mohamed
    Khalil, Azira
    Lai, Khin Wee
    2018 IEEE-EMBS CONFERENCE ON BIOMEDICAL ENGINEERING AND SCIENCES (IECBES), 2018, : 91 - 95
  • [24] A residual convolutional neural network based approach for real-time path planning
    Liu, Yang
    Zheng, Zheng
    Qin, Fangyun
    Zhang, Xiaoyi
    Yao, Haonan
    KNOWLEDGE-BASED SYSTEMS, 2022, 242
  • [25] A convolutional neural network with feature fusion for real-time hand posture recognition
    Chevtchenko, Sergio F.
    Vale, Rafaella F.
    Macario, Valmir
    Cordeiro, Filipe R.
    APPLIED SOFT COMPUTING, 2018, 73 : 748 - 766
  • [26] Convolutional Neural Network-Based Real-Time Object Detection and Tracking for Parrot AR Drone 2
    Rohan, Ali
    Rabah, Mohammed
    Kim, Sung-Ho
    IEEE ACCESS, 2019, 7 : 69575 - 69584
  • [27] Convolutional neural networks for real-time epileptic seizure detection
    Achilles, Felix
    Tombari, Federico
    Belagiannis, Vasileios
    Loesch, Anna Mira
    Noachtar, Soheyl
    Navab, Nassir
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION, 2018, 6 (03) : 264 - 269
  • [28] MBAB-YOLO: A Modified Lightweight Architecture for Real-Time Small Target Detection
    Zhang, Jun
    Meng, Yizhen
    Yu, Xiaohui
    Bi, Hongjing
    Chen, Zhipeng
    Li, Huafeng
    Yang, Runtao
    Tian, Jingjun
    IEEE ACCESS, 2023, 11 : 78384 - 78401
  • [29] Lightweight Real-Time Target Detection Model for Remote Sensing Images
    Li Yuhuan
    Wang Jie
    Lu Li
    Nie Ying
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (16)
  • [30] Real-Time Optical Fiber End Surface Defects Detection Model Based on Lightweight Improved Network
    Song Minyu
    Chen Lirong
    Liang Jian'an
    Li Jinpeng
    Niu Zhenzhen
    Wang Zhen
    Bai Lili
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (24)