Real-Time Target Detection Method Based on Lightweight Convolutional Neural Network

被引:62
|
作者
Yun, Juntong [1 ,2 ]
Jiang, Du [1 ,3 ,4 ]
Liu, Ying [2 ,4 ]
Sun, Ying [1 ,3 ,4 ]
Tao, Bo [1 ,3 ,4 ]
Kong, Jianyi [2 ,3 ,4 ]
Tian, Jinrong [1 ,2 ]
Tong, Xiliang [2 ,4 ]
Xu, Manman [1 ,2 ,3 ]
Fang, Zifan [5 ]
机构
[1] Wuhan Univ Sci & Technol, Key Lab Met Equipment & Control Technol, Minist Educ, Wuhan, Peoples R China
[2] Wuhan Univ Sci & Technol, Res Ctr Biomimet Robot & Intelligent Measurement &, Wuhan, Peoples R China
[3] Wuhan Univ Sci & Technol, Hubei Key Lab Mech Transmiss & Mfg Engn, Wuhan, Peoples R China
[4] Wuhan Univ Sci & Technol, Precis Mfg Res Inst, Wuhan, Peoples R China
[5] China Three Gorges Univ, Hubei Key Lab Hydroelect Machinery Design & Mainte, Yichang, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep learning; target detection; MobileNets-SSD; depthwise separable convolution; residual module; GESTURE RECOGNITION;
D O I
10.3389/fbioe.2022.861286
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The continuous development of deep learning improves target detection technology day by day. The current research focuses on improving the accuracy of target detection technology, resulting in the target detection model being too large. The number of parameters and detection speed of the target detection model are very important for the practical application of target detection technology in embedded systems. This article proposed a real-time target detection method based on a lightweight convolutional neural network to reduce the number of model parameters and improve the detection speed. In this article, the depthwise separable residual module is constructed by combining depthwise separable convolution and non-bottleneck-free residual module, and the depthwise separable residual module and depthwise separable convolution structure are used to replace the VGG backbone network in the SSD network for feature extraction of the target detection model to reduce parameter quantity and improve detection speed. At the same time, the convolution kernels of 1 x 3 and 3 x 1 are used to replace the standard convolution of 3 x 3 by adding the convolution kernels of 1 x 3 and 3 x 1, respectively, to obtain multiple detection feature graphs corresponding to SSD, and the real-time target detection model based on a lightweight convolutional neural network is established by integrating the information of multiple detection feature graphs. This article used the self-built target detection dataset in complex scenes for comparative experiments; the experimental results verify the effectiveness and superiority of the proposed method. The model is tested on video to verify the real-time performance of the model, and the model is deployed on the Android platform to verify the scalability of the model.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] A method of radar target detection based on convolutional neural network
    Wen Jiang
    Yihui Ren
    Ying Liu
    Jiaxu Leng
    Neural Computing and Applications, 2021, 33 : 9835 - 9847
  • [22] A method of radar target detection based on convolutional neural network
    Jiang, Wen
    Ren, Yihui
    Liu, Ying
    Leng, Jiaxu
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (16): : 9835 - 9847
  • [23] A method of radar target detection based on convolutional neural network
    Jiang, Wen
    Ren, Yihui
    Liu, Ying
    Leng, Jiaxu
    Jiang, Wen (jiangwen19@mails.ucas.edu.cn), 1600, Springer Science and Business Media Deutschland GmbH (33): : 9835 - 9847
  • [24] Real-Time Fuel Truck Detection Algorithm Based on Deep Convolutional Neural Network
    Alsanad, Hamid R.
    Ucan, Osman N.
    Ilyas, Muhammad
    Khan, Atta Ur Rehman
    Bayat, Oguz
    IEEE ACCESS, 2020, 8 : 118808 - 118817
  • [25] Real-time train passenger flow detection algorithm based on convolutional neural network
    Zuo J.
    Yu Z.
    Journal of Railway Science and Engineering, 2023, 20 (03) : 836 - 845
  • [26] Real-time Road Cracks Detection based on Improved Deep Convolutional Neural Network
    Hassan, Syed Ali
    Han, Seung Heon
    Shin, Soo Young
    2020 IEEE CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (CCECE), 2020,
  • [27] Structural Damage Detection Based on Real-Time Vibration Signal and Convolutional Neural Network
    Teng, Zhiqiang
    Teng, Shuai
    Zhang, Jiqiao
    Chen, Gongfa
    Cui, Fangsen
    APPLIED SCIENCES-BASEL, 2020, 10 (14):
  • [28] Real-time Detection of Facial Expression Based on Improved Residual Convolutional Neural Network
    Wang, Sen
    Wang, Xiaofei
    Chen, Runxing
    Liu, Yong
    Huang, Shuo
    CONFERENCE PROCEEDINGS OF 2019 IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, COMMUNICATIONS AND COMPUTING (IEEE ICSPCC 2019), 2019,
  • [29] A convolutional neural network based approach towards real-time hard hat detection
    Xie, Zaipeng
    Liu, Hanxiang
    Li, Zewen
    He, Yuechao
    PROCEEDINGS OF THE 2018 IEEE INTERNATIONAL CONFERENCE ON PROGRESS IN INFORMATICS AND COMPUTING (PIC), 2018, : 430 - 434
  • [30] Towards Real-Time Smile Detection based on Faster Region Convolutional Neural Network
    Chi Cuong Nguyen
    Tran, Giang Son
    Thi Phuong Nghiem
    Nhat Quang Doan
    Gratadour, Damien
    Burie, Jean Christophe
    Chi Mai Luong
    2018 1ST INTERNATIONAL CONFERENCE ON MULTIMEDIA ANALYSIS AND PATTERN RECOGNITION (MAPR), 2018,