Comparison of Two Frameworks for Analyzing Longitudinal Data

被引:1
作者
Zhou, Jie [1 ]
Zhou, Xiao-Hua [2 ,3 ]
Sun, Liuquan [4 ]
机构
[1] Capital Normal Univ, Sch Math, Beijing 100048, Peoples R China
[2] Peking Univ, Sch Publ Hlth, Dept Biostat, Beijing 100871, Peoples R China
[3] Peking Univ, Beijing Int Ctr Math Res, Beijing 100871, Peoples R China
[4] Chinese Acad Sci, Acad Math & Syst Sci, Inst Appl Math, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Clustered data framework; counting process framework; estimation procedures; longitudinal data; INFORMATIVE OBSERVATION; SEMIPARAMETRIC REGRESSION; MISSING DATA; MODEL; TIMES;
D O I
10.1214/20-STS813
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Under the random design of longitudinal data, observation times are irregular, and there are mainly two frameworks for analyzing such kind of longitudinal data. One is the clustered data framework and the other is the counting process framework. In this paper, we give a thorough comparison of these two frameworks in terms of data structure, model assumptions and estimation procedures. We find that modeling the observation times in the counting process framework will not gain any efficiency when the observation times are correlated with covariates but independent of the longitudinal response given covariates. Some simulation studies are conducted to compare the finite sample behaviors of the related estimators, and a real data analysis of the Alzheimer's disease study is implemented for further comparison.
引用
收藏
页码:530 / 541
页数:12
相关论文
共 50 条
  • [41] TWO-STAGE EMPIRICAL LIKELIHOOD FOR LONGITUDINAL NEUROIMAGING DATA
    Shi, Xiaoyan
    Ibrahim, Joseph G.
    Lieberman, Jeffrey
    Styner, Martin
    Li, Yimei
    Zhu, Hongtu
    [J]. ANNALS OF APPLIED STATISTICS, 2011, 5 (2B) : 1132 - 1158
  • [42] Mixed-Effect Hybrid Models for Longitudinal Data with Nonignorable Dropout
    Yuan, Ying
    Little, Roderick J. A.
    [J]. BIOMETRICS, 2009, 65 (02) : 478 - 486
  • [43] Analyzing Complex Longitudinal Data in Educational Research: A Demonstration With Project English Language and Literacy Acquisition (ELLA) Data Using xxM
    Kwok, Oi-Man
    Lai, Mark Hok-Chio
    Tong, Fuhui
    Lara-Alecio, Rafael
    Irby, Beverly
    Yoon, Myeongsun
    Yeh, Yu-Chen
    [J]. FRONTIERS IN PSYCHOLOGY, 2018, 9
  • [44] Clustering of longitudinal data by using an extended baseline: A new method for treatment efficacy clustering in longitudinal data
    Schramm, Catherine
    Vial, Celine
    Bachoud-Levi, Anne-Catherine
    Katsahian, Sandrine
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2018, 27 (01) : 97 - 113
  • [45] Comparison of predictor approaches for longitudinal binary outcomes: application to anesthesiology data
    Samur, Anil Aktas
    Coskunfirat, Nesil
    Saka, Osman
    [J]. PEERJ, 2014, 2
  • [46] Error-rate estimation in discriminant analysis of non-linear longitudinal data: A comparison of resampling methods
    de la Cruz, Rolando
    Fuentes, Claudio
    Meza, Cristian
    Nunez-Anton, Vicente
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2018, 27 (04) : 1153 - 1167
  • [47] Design and analysis of two-phase studies with multivariate longitudinal data
    Di Gravio, Chiara
    Tao, Ran
    Schildcrout, Jonathan S.
    [J]. BIOMETRICS, 2023, 79 (02) : 1420 - 1432
  • [48] Multiple Imputation for Longitudinal Data: A Tutorial
    Wijesuriya, Rushani
    Moreno-Betancur, Margarita
    Carlin, John B.
    White, Ian R.
    Quartagno, Matteo
    Lee, Katherine J.
    [J]. STATISTICS IN MEDICINE, 2025, 44 (3-4)
  • [49] GENERALIZED MULTIVARIATE MODELS FOR LONGITUDINAL DATA
    PARK, T
    WOOLSON, RF
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1992, 21 (04) : 925 - 946
  • [50] Frameworks for entity matching: A comparison
    Koepcke, Hanna
    Rahm, Erhard
    [J]. DATA & KNOWLEDGE ENGINEERING, 2010, 69 (02) : 197 - 210