Comparison of Two Frameworks for Analyzing Longitudinal Data

被引:1
|
作者
Zhou, Jie [1 ]
Zhou, Xiao-Hua [2 ,3 ]
Sun, Liuquan [4 ]
机构
[1] Capital Normal Univ, Sch Math, Beijing 100048, Peoples R China
[2] Peking Univ, Sch Publ Hlth, Dept Biostat, Beijing 100871, Peoples R China
[3] Peking Univ, Beijing Int Ctr Math Res, Beijing 100871, Peoples R China
[4] Chinese Acad Sci, Acad Math & Syst Sci, Inst Appl Math, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Clustered data framework; counting process framework; estimation procedures; longitudinal data; INFORMATIVE OBSERVATION; SEMIPARAMETRIC REGRESSION; MISSING DATA; MODEL; TIMES;
D O I
10.1214/20-STS813
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Under the random design of longitudinal data, observation times are irregular, and there are mainly two frameworks for analyzing such kind of longitudinal data. One is the clustered data framework and the other is the counting process framework. In this paper, we give a thorough comparison of these two frameworks in terms of data structure, model assumptions and estimation procedures. We find that modeling the observation times in the counting process framework will not gain any efficiency when the observation times are correlated with covariates but independent of the longitudinal response given covariates. Some simulation studies are conducted to compare the finite sample behaviors of the related estimators, and a real data analysis of the Alzheimer's disease study is implemented for further comparison.
引用
收藏
页码:530 / 541
页数:12
相关论文
共 50 条
  • [21] Methodological Issues in Analyzing Real-World Longitudinal Occupational Health Data: A Useful Guide to Approaching the Topic
    Colin-Chevalier, Remi
    Dutheil, Frederic
    Cambier, Sebastien
    Dewavrin, Samuel
    Cornet, Thomas
    Baker, Julien Steven
    Pereira, Bruno
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2022, 19 (12)
  • [22] Analyzing longitudinal data and use of the generalized linear model in health and social sciences
    Arnau, Jaume
    Bono, Roser
    Bendayan, Rebecca
    Blanca, Maria J.
    QUALITY & QUANTITY, 2016, 50 (02) : 693 - 707
  • [23] Analyzing longitudinal clinical trial data with nonignorable missingness and unknown missingness reasons
    Xie, Hui
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (05) : 1287 - 1300
  • [24] Analyzing longitudinal rating data: A three-level hierarchical linear model
    Gao, SY
    Hussey, D
    SOCIAL WORK RESEARCH, 1999, 23 (04) : 258 - 269
  • [25] Analyzing longitudinal data and use of the generalized linear model in health and social sciences
    Jaume Arnau
    Roser Bono
    Rebecca Bendayan
    Maria J. Blanca
    Quality & Quantity, 2016, 50 : 693 - 707
  • [26] Reducing Selection Bias in Analyzing Longitudinal Health Data with High Mortality Rates
    Liu, Xian
    Engel, Charles C.
    Kang, Han
    Gore, Kristie L.
    JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2010, 9 (02) : 403 - 413
  • [27] Statistical Considerations for Analyzing Data Derived from Long Longitudinal Cohort Studies
    Fernandez-Iglesias, Rocio
    Martinez-Camblor, Pablo
    Tardon, Adonina
    Fernandez-Somoano, Ana
    MATHEMATICS, 2023, 11 (19)
  • [28] Semiparametric modeling and analysis of longitudinal method comparison data
    Rathnayake, Lasitha N.
    Choudhary, Pankaj K.
    STATISTICS IN MEDICINE, 2017, 36 (13) : 2003 - 2015
  • [29] Marginal analyses of longitudinal data with an informative pattern of observations
    Farewell, D. M.
    BIOMETRIKA, 2010, 97 (01) : 65 - 78
  • [30] Robust estimation of models for longitudinal data with dropouts and outliers
    Zhang, Yuexia
    Qin, Guoyou
    Zhu, Zhongyi
    Fu, Bo
    JOURNAL OF APPLIED STATISTICS, 2022, 49 (04) : 902 - 925