Comparison of Two Frameworks for Analyzing Longitudinal Data

被引:1
|
作者
Zhou, Jie [1 ]
Zhou, Xiao-Hua [2 ,3 ]
Sun, Liuquan [4 ]
机构
[1] Capital Normal Univ, Sch Math, Beijing 100048, Peoples R China
[2] Peking Univ, Sch Publ Hlth, Dept Biostat, Beijing 100871, Peoples R China
[3] Peking Univ, Beijing Int Ctr Math Res, Beijing 100871, Peoples R China
[4] Chinese Acad Sci, Acad Math & Syst Sci, Inst Appl Math, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Clustered data framework; counting process framework; estimation procedures; longitudinal data; INFORMATIVE OBSERVATION; SEMIPARAMETRIC REGRESSION; MISSING DATA; MODEL; TIMES;
D O I
10.1214/20-STS813
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Under the random design of longitudinal data, observation times are irregular, and there are mainly two frameworks for analyzing such kind of longitudinal data. One is the clustered data framework and the other is the counting process framework. In this paper, we give a thorough comparison of these two frameworks in terms of data structure, model assumptions and estimation procedures. We find that modeling the observation times in the counting process framework will not gain any efficiency when the observation times are correlated with covariates but independent of the longitudinal response given covariates. Some simulation studies are conducted to compare the finite sample behaviors of the related estimators, and a real data analysis of the Alzheimer's disease study is implemented for further comparison.
引用
收藏
页码:530 / 541
页数:12
相关论文
共 50 条
  • [1] Analyzing Longitudinal Data With Missing Values
    Enders, Craig K.
    REHABILITATION PSYCHOLOGY, 2011, 56 (04) : 267 - 288
  • [2] Analyzing Longitudinal Microbial Metabolomics Data
    Rubingh, Carina M.
    Bijlsma, Sabina
    Jellema, Renger H.
    Overkamp, Karin M.
    van der Werf, Mariet J.
    Smilde, Age K.
    JOURNAL OF PROTEOME RESEARCH, 2009, 8 (09) : 4319 - 4327
  • [3] Analyzing Longitudinal Data with Informative Observation and Terminal Event Times
    Miao, Rui
    Chen, Xin
    Sun, Liu-quan
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2016, 32 (04): : 1035 - 1052
  • [4] A practical introduction to methods for analyzing longitudinal data in the presence of missing data using a marijuana price survey
    Miles, Jeremy N. V.
    Hunt, Priscillia
    JOURNAL OF CRIMINAL PSYCHOLOGY, 2015, 5 (02) : 137 - 148
  • [5] Generalized empirical likelihood methods for analyzing longitudinal data
    Wang, Suojin
    Qian, Lianfen
    Carroll, Raymond J.
    BIOMETRIKA, 2010, 97 (01) : 79 - 93
  • [6] Analyzing Longitudinal Multirater Data with Changing and Stable Raters
    Koch, Tobias
    Holtmann, Jana
    Eid, Michael
    West, Stephen G.
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2020, 27 (01) : 73 - 87
  • [7] Variable selection in rank regression for analyzing longitudinal data
    Fu, Liya
    Wang, You-Gan
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2018, 27 (08) : 2447 - 2458
  • [8] Comparison of statistical approaches for analyzing incomplete longitudinal patient-reported outcome data in randomized controlled trials
    Rombach, Ines
    Jenkinson, Crispin
    Gray, Alastair M.
    Murray, David W.
    Rivero-Arias, Oliver
    PATIENT-RELATED OUTCOME MEASURES, 2018, 9 : 197 - 209
  • [9] Analyzing longitudinal data with informative observation and terminal event times
    Rui Miao
    Xin Chen
    Liu-quan Sun
    Acta Mathematicae Applicatae Sinica, English Series, 2016, 32 : 1035 - 1052
  • [10] Analyzing Longitudinal Data Using Natural Cubic Smoothing Spline
    Marcoulides, Katerina M.
    Khojasteh, Jam
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2018, 25 (06) : 965 - 971