Nonsmooth analysis and Hamilton-Jacobi equations on Riemannian manifolds

被引:120
作者
Azagra, D [1 ]
Ferrera, J [1 ]
López-Mesas, F [1 ]
机构
[1] Univ Complutense Madrid, Fac Matemat, Dept Analisis Matemat, E-28040 Madrid, Spain
关键词
subdifferential; Riemannian manifolds;
D O I
10.1016/j.jfa.2004.10.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish some perturbed minimization principles, and we develop a theory of subdifferential calculus, for functions defined on Riemannian manifolds. Then we apply these results to show existence and uniqueness of viscosity solutions to Hamilton-Jacobi equations defined on Riemannian manifolds. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:304 / 361
页数:58
相关论文
共 47 条
[1]  
[Anonymous], 1980, FDN MECH
[2]   MEAN-VALUE PROPERTY AND SUBDIFFERENTIAL CRITERIA FOR LOWER SEMICONTINUOUS FUNCTIONS [J].
AUSSEL, D ;
CORVELLEC, JN ;
LASSONDE, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 347 (10) :4147-4161
[3]   Uniform approximation of continuous mappings by smooth mappings with no critical points on Hilbert manifolds [J].
Azagra, D ;
Boiso, MC .
DUKE MATHEMATICAL JOURNAL, 2004, 124 (01) :47-66
[4]   Rolle's theorem and negligibility of points in infinite dimensional Banach spaces [J].
Azagra, D ;
Gomez, J ;
Jaramillo, JA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 213 (02) :487-495
[5]   Subdifferential Rolle's and mean value inequality theorems [J].
Azagra, D ;
Deville, R .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1997, 56 (02) :319-329
[6]   The failure of Rolle's theorem in infinite-dimensional Banach spaces [J].
Azagra, D ;
Jiménez-Sevilla, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 182 (01) :207-226
[7]  
Azagra D., 1997, THESIS U COMPLUTENSE
[8]  
Barles G., 1994, Solutions de viscosite des equations de Hamilton-Jacobi, V17
[9]  
BES J, 1996, PUBL DTO ANAL MAT UC, V1, P21
[10]  
Clarke F.H., 1998, GRAD TEXT M, V178