Synthesis and magnetic properties of Fe3C-C core-shell nanoparticles

被引:42
作者
Liu, Jun [1 ]
Yu, Bowen [1 ]
Zhang, Qiankun [1 ,2 ]
Hou, Lizhen [3 ]
Huang, Qiulai [1 ]
Song, Chunrui [1 ]
Wang, Shiliang [1 ,3 ]
Wu, Yueqin [3 ]
He, Yuehui [1 ]
Zou, Jin [3 ]
Huang, Han [3 ]
机构
[1] Cent S Univ, State Key Lab Powder Met, Sch Phys & Elect, Changsha 410083, Peoples R China
[2] Hunan Normal Univ, Sch Phys & Informat Sci, Changsha 410081, Hunan, Peoples R China
[3] Univ Queensland, Sch Mech & Min Engn, Brisbane, Qld 4072, Australia
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
core-shell nanoparticles; iron carbide; carbon; metal-organic chemical vapor deposition; IRON CARBIDE; CARBON; GROWTH; GRAPHITIZATION; NANOCAPSULES; PERFORMANCE; ANODE; FE;
D O I
10.1088/0957-4484/26/8/085601
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Fe3C-C core-shell nanoparticles were fabricated on a large scale by metal-organic chemical vapor deposition at 700 degrees C with ferric acetylacetonate as the precursor. Analysis results of x-ray diffraction, transmission electron microscope and Raman spectroscope showed that the Fe3C cores with an average diameter of similar to 35 nm were capsulated by the graphite-like C layers with the thickness of 2-5 nm. The comparative experiments revealed that considerable Fe3O4-Fe3C core-shell nanoparticles and C nanotubes were generated simultaneously at 600 and 800 degrees C, respectively. A formation mechanism was proposed for the as-synthesized core-shell nanostructures, based on the temperature-dependent catalytic activity of Fe3C nanoclusters and the coalescence process of Fe3C-C nanoclusters. The Fe3C-C core-shell nanoparticles exhibited a saturation magnetization of 23.6 emu g(-1) and a coercivity of 550 Oe at room temperature.
引用
收藏
页数:7
相关论文
共 36 条
[1]   Thermal and gas analyses of the reaction between iron carbide and steam with hydrogen generation at 573 K [J].
Akiyama, T ;
Miyazaki, A ;
Nakanishi, H ;
Hisa, M ;
Tsutsumi, A .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2004, 29 (07) :721-724
[2]   An easy method for the preparation of core-shell structural Fe3C@graphite-like carbon hollow spheres [J].
Bo Tang ;
Hu Guoxin ;
Xia Min .
MATERIALS LETTERS, 2012, 68 :104-107
[3]   Formation, characterization and magnetic properties of carbon-encapsulated iron carbide nanoparticles [J].
Fan, Na ;
Ma, Xicheng ;
Ju, Zhicheng ;
Li, Jing .
MATERIALS RESEARCH BULLETIN, 2008, 43 (06) :1549-1554
[4]   Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon [J].
Ferrari, AC ;
Robertson, J .
PHYSICAL REVIEW B, 2001, 64 (07)
[5]   Direct conversion of iron stearate into magnetic Fe and Fe3C nanocrystals encapsulated in polyhedral graphite cages [J].
Geng, JF ;
Jefferson, DA ;
Johnson, BFG .
CHEMICAL COMMUNICATIONS, 2004, (21) :2442-2443
[6]   Non-conventional Fe3C-based nanostructures [J].
Giordano, Cristina ;
Kraupner, Alexander ;
Fleischer, Iris ;
Henrich, Cristina ;
Klingelhoefer, Goestar ;
Antonietti, Markus .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (42) :16963-16967
[7]   Iron Catalysts for the Growth of Carbon Nanofibers: Fe, Fe3C or Both? [J].
He, Zhanbing ;
Maurice, Jean-Luc ;
Gohier, Aurelien ;
Lee, Chang Seok ;
Pribat, Didier ;
Cojocaru, Costel Sorin .
CHEMISTRY OF MATERIALS, 2011, 23 (24) :5379-5387
[8]   SATURATION MAGNETIZATIONS OF IRON CARBIDES [J].
HOFER, LJE ;
COHN, EM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1959, 81 (07) :1576-1582
[9]   Preparation, formation mechanism and optical properties of C/Cu shell/core nanostructures [J].
Huang Xiao-Lin ;
Hou Li-Zhen ;
Yu Bo-Wen ;
Chen Guo-Liang ;
Wang Shi-Liang ;
Ma Liang ;
Liu Xin-Li ;
He Yue-Hui .
ACTA PHYSICA SINICA, 2013, 62 (10)
[10]   Synthesis of carbon-encapsulated iron carbide nanoparticles on a polyimide thin film [J].
Kim, J. H. ;
Kim, J. ;
Park, J. H. ;
Kim, C. K. ;
Yoon, C. S. ;
Shon, Y. .
NANOTECHNOLOGY, 2007, 18 (11)