Virtual genetic diagnosis for familial hypercholesterolemia powered by machine learning

被引:32
|
作者
Pina, Ana [1 ,2 ,3 ]
Helgadottir, Saga [4 ]
Mancina, Rosellina Margherita [5 ]
Pavanello, Chiara [6 ]
Pirazzi, Carlo [7 ]
Montalcini, Tiziana [8 ]
Henriques, Roberto [9 ]
Calabresi, Laura [6 ]
Wiklund, Olov [5 ]
Macedo, M. Paula [1 ,2 ,3 ]
Valenti, Luca [10 ,11 ]
Volpe, Giovanni [4 ]
Romeo, Stefano [5 ,7 ,8 ]
机构
[1] Univ Nova Lisboa, NOVA Med Sch, CEDOC, Fac Ciencias Med, Lisbon, Portugal
[2] Portuguese Diabet Assoc, Educ & Res Ctr APDP ERC, Lisbon, Portugal
[3] Univ Aveiro, Dept Med Sci, Aveiro, Portugal
[4] Univ Gothenburg, Dept Phys, Gothenburg, Sweden
[5] Univ Gothenburg, Sahlgrenska Acad, Inst Med, Wallenberg Lab,Dept Mol & Clin Med, Bruna Straket 16, SE-41345 Gothenburg, Sweden
[6] Univ Milan, Ctr E Grossi Paoletti, Dipartimento Sci Farmacol & Biomol, Milan, Italy
[7] Sahlgrens Univ Hosp, Dept Cardiol, Gothenburg, Sweden
[8] Magna Graecia Univ Catanzaro, Dept Med & Surg Sci, Clin Nutr Unit, Catanzaro, Italy
[9] NOVA Informat Management Sch, Campus Campolide, Lisbon, Portugal
[10] Univ Milan, Fdn IRCCS CaGranda Osped Maggiore Policlin, Dept Transfus Med & Hematol, Translat Med, Milan, Italy
[11] Univ Milan, Dept Pathophysiol & Transplantat, Milan, Italy
基金
瑞典研究理事会; 欧盟地平线“2020”;
关键词
Familial hypercholesterolemia; prediction model; machine learning; dyslipidemia; cardiovascular disease; FATTY LIVER; POPULATION; DYSLIPIDEMIA; METABOLISM;
D O I
10.1177/2047487319898951
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Aims Familial hypercholesterolemia (FH) is the most common genetic disorder of lipid metabolism. The gold standard for FH diagnosis is genetic testing, available, however, only in selected university hospitals. Clinical scores - for example, the Dutch Lipid Score - are often employed as alternative, more accessible, albeit less accurate FH diagnostic tools. The aim of this study is to obtain a more reliable approach to FH diagnosis by a "virtual" genetic test using machine-learning approaches. Methods and results We used three machine-learning algorithms (a classification tree (CT), a gradient boosting machine (GBM), a neural network (NN)) to predict the presence of FH-causative genetic mutations in two independent FH cohorts: the FH Gothenburg cohort (split into training data (N = 174) and internal test (N = 74)) and the FH-CEGP Milan cohort (external test, N = 364). By evaluating their area under the receiver operating characteristic (AUROC) curves, we found that the three machine-learning algorithms performed better (AUROC 0.79 (CT), 0.83 (GBM), and 0.83 (NN) on the Gothenburg cohort, and 0.70 (CT), 0.78 (GBM), and 0.76 (NN) on the Milan cohort) than the clinical Dutch Lipid Score (AUROC 0.68 and 0.64 on the Gothenburg and Milan cohorts, respectively) in predicting carriers of FH-causative mutations. Conclusion In the diagnosis of FH-causative genetic mutations, all three machine-learning approaches we have tested outperform the Dutch Lipid Score, which is the clinical standard. We expect these machine-learning algorithms to provide the tools to implement a virtual genetic test of FH. These tools might prove particularly important for lipid clinics without access to genetic testing.
引用
收藏
页码:1639 / 1646
页数:8
相关论文
共 50 条
  • [31] The island of Gran Canaria: A genetic isolate for familial hypercholesterolemia
    Sanchez-Hernandez, Rosa M.
    Tugores, Antonio
    Novoa, Francisco
    Brito-Casillas, Yeray
    Exposito-Montesdeoca, Ana B.
    Garay, Paloma
    Bea, Ana M.
    Riano, Marta
    Pocovi, Miguel
    Civeira, Fernando
    Wagner, Ana M.
    Boronat, Mauro
    JOURNAL OF CLINICAL LIPIDOLOGY, 2019, 13 (04) : 618 - 626
  • [32] Homozygous familial hypercholesterolemia: Current perspectives on diagnosis and treatment
    Raal, Frederick J.
    Santos, Raul D.
    ATHEROSCLEROSIS, 2012, 223 (02) : 262 - 268
  • [33] Genetic Testing and Risk Scores: Impact on Familial Hypercholesterolemia
    Sarraju, Ashish
    Knowles, Joshua W.
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2019, 6
  • [34] Guidelines for the Diagnosis and Treatment of Adult Familial Hypercholesterolemia 2022
    Harada-Shiba, Mariko
    Arai, Hidenori
    Ohmura, Hirotoshi
    Okazaki, Hiroaki
    Sugiyama, Daisuke
    Tada, Hayato
    Dobashi, Kazushige
    Matsuki, Kota
    Minamino, Tetsuo
    Yamashita, Shizuya
    Yokote, Koutaro
    JOURNAL OF ATHEROSCLEROSIS AND THROMBOSIS, 2023, 30 (05) : 558 - 586
  • [35] Familial hypercholesterolemia: A complex genetic disease with variable phenotypes
    Di Taranto, Maria Donata
    Giacobbe, Carola
    Fortunato, Giuliana
    EUROPEAN JOURNAL OF MEDICAL GENETICS, 2020, 63 (04)
  • [36] Lipoprotein(a) Genotype Influences the Clinical Diagnosis of Familial Hypercholesterolemia
    Olmastroni, Elena
    Gazzotti, Marta
    Averna, Maurizio
    Arca, Marcello
    Tarugi, Patrizia
    Calandra, Sebastiano
    Bertolini, Stefano
    Catapano, Alberico L.
    Casula, Manuela
    JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2023, 12 (10):
  • [37] A modified algorithm with lipoprotein(a) added for diagnosis of familial hypercholesterolemia
    Sun, Di
    Cao, Ye-Xuan
    Li, Sha
    Guo, Yuan-Lin
    Wu, Na-Qiong
    Gao, Ying
    Dong, Qiu-Ting
    Liu, Geng
    Dong, Qian
    Li, Jian-Jun
    CLINICAL CARDIOLOGY, 2019, 42 (10) : 988 - 994
  • [38] Expanded genetic testing in familial hypercholesterolemia-A single center's experience
    Brown, Emily E.
    Byrne, Kathleen
    Michos, Erin D.
    Leucker, Thorsten M.
    Marvel, Francoise
    Jones, Steven R.
    Martin, Seth S.
    Arvanitis, Marios
    AMERICAN JOURNAL OF PREVENTIVE CARDIOLOGY, 2024, 18
  • [39] Genetic diagnosis of familial hypercholesterolemia using a DNA-array based platform
    Alonso, Rodrigo
    Defesche, Joep C.
    Tejedor, Diego
    Castillo, Sergio
    Stef, Marianne
    Mata, Nelva
    Gomez-Enterria, Pilar
    Martinez-Faedo, Ceferino
    Forga, Lluis
    Mata, Pedro
    CLINICAL BIOCHEMISTRY, 2009, 42 (09) : 899 - 903
  • [40] Genetic spectrum of familial hypercholesterolemia and correlations with clinical expression: Implications for diagnosis improvement
    Di Taranto, Maria Donata
    Giacobbe, Carola
    Palma, Daniela
    Iannuzzo, Gabriella
    Gentile, Marco
    Calcaterra, Ilenia
    Guardamagna, Ornella
    Auricchio, Renata
    Di Minno, Matteo Nicola Dario
    Fortunato, Giuliana
    CLINICAL GENETICS, 2021, 100 (05) : 529 - 541