Virtual genetic diagnosis for familial hypercholesterolemia powered by machine learning

被引:32
|
作者
Pina, Ana [1 ,2 ,3 ]
Helgadottir, Saga [4 ]
Mancina, Rosellina Margherita [5 ]
Pavanello, Chiara [6 ]
Pirazzi, Carlo [7 ]
Montalcini, Tiziana [8 ]
Henriques, Roberto [9 ]
Calabresi, Laura [6 ]
Wiklund, Olov [5 ]
Macedo, M. Paula [1 ,2 ,3 ]
Valenti, Luca [10 ,11 ]
Volpe, Giovanni [4 ]
Romeo, Stefano [5 ,7 ,8 ]
机构
[1] Univ Nova Lisboa, NOVA Med Sch, CEDOC, Fac Ciencias Med, Lisbon, Portugal
[2] Portuguese Diabet Assoc, Educ & Res Ctr APDP ERC, Lisbon, Portugal
[3] Univ Aveiro, Dept Med Sci, Aveiro, Portugal
[4] Univ Gothenburg, Dept Phys, Gothenburg, Sweden
[5] Univ Gothenburg, Sahlgrenska Acad, Inst Med, Wallenberg Lab,Dept Mol & Clin Med, Bruna Straket 16, SE-41345 Gothenburg, Sweden
[6] Univ Milan, Ctr E Grossi Paoletti, Dipartimento Sci Farmacol & Biomol, Milan, Italy
[7] Sahlgrens Univ Hosp, Dept Cardiol, Gothenburg, Sweden
[8] Magna Graecia Univ Catanzaro, Dept Med & Surg Sci, Clin Nutr Unit, Catanzaro, Italy
[9] NOVA Informat Management Sch, Campus Campolide, Lisbon, Portugal
[10] Univ Milan, Fdn IRCCS CaGranda Osped Maggiore Policlin, Dept Transfus Med & Hematol, Translat Med, Milan, Italy
[11] Univ Milan, Dept Pathophysiol & Transplantat, Milan, Italy
基金
瑞典研究理事会; 欧盟地平线“2020”;
关键词
Familial hypercholesterolemia; prediction model; machine learning; dyslipidemia; cardiovascular disease; FATTY LIVER; POPULATION; DYSLIPIDEMIA; METABOLISM;
D O I
10.1177/2047487319898951
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Aims Familial hypercholesterolemia (FH) is the most common genetic disorder of lipid metabolism. The gold standard for FH diagnosis is genetic testing, available, however, only in selected university hospitals. Clinical scores - for example, the Dutch Lipid Score - are often employed as alternative, more accessible, albeit less accurate FH diagnostic tools. The aim of this study is to obtain a more reliable approach to FH diagnosis by a "virtual" genetic test using machine-learning approaches. Methods and results We used three machine-learning algorithms (a classification tree (CT), a gradient boosting machine (GBM), a neural network (NN)) to predict the presence of FH-causative genetic mutations in two independent FH cohorts: the FH Gothenburg cohort (split into training data (N = 174) and internal test (N = 74)) and the FH-CEGP Milan cohort (external test, N = 364). By evaluating their area under the receiver operating characteristic (AUROC) curves, we found that the three machine-learning algorithms performed better (AUROC 0.79 (CT), 0.83 (GBM), and 0.83 (NN) on the Gothenburg cohort, and 0.70 (CT), 0.78 (GBM), and 0.76 (NN) on the Milan cohort) than the clinical Dutch Lipid Score (AUROC 0.68 and 0.64 on the Gothenburg and Milan cohorts, respectively) in predicting carriers of FH-causative mutations. Conclusion In the diagnosis of FH-causative genetic mutations, all three machine-learning approaches we have tested outperform the Dutch Lipid Score, which is the clinical standard. We expect these machine-learning algorithms to provide the tools to implement a virtual genetic test of FH. These tools might prove particularly important for lipid clinics without access to genetic testing.
引用
收藏
页码:1639 / 1646
页数:8
相关论文
共 50 条
  • [21] Improving the Detection of Potential Cases of Familial Hypercholesterolemia: Could Machine Learning Be Part of the Solution?
    Stevens, Christophe A. T.
    Vallejo-Vaz, Antonio J.
    Chora, Joana R.
    Barkas, Fotis
    Brandts, Julia
    Mahani, Alireza
    Abar, Leila
    Sharabiani, Mansour T. A.
    Ray, Kausik K.
    JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2024, 13 (12):
  • [22] Guidelines for Diagnosis and Treatment of Familial Hypercholesterolemia 2017
    Harada-Shiba, Mariko
    Arai, Hidenori
    Ishigaki, Yasushi
    Ishibashi, Shun
    Okamura, Tomonori
    Ogura, Masatsune
    Dobashi, Kazushige
    Nohara, Atsushi
    Bujo, Hideaki
    Miyauchi, Katsumi
    Yamashita, Shizuya
    Yokote, Koutaro
    JOURNAL OF ATHEROSCLEROSIS AND THROMBOSIS, 2018, 25 (08) : 751 - 770
  • [23] Genetic diagnosis of familial hypercholesterolemia in affected relatives using pedigree tracing
    Hsia, SH
    Connelly, PW
    Hegele, RA
    CLINICAL BIOCHEMISTRY, 1996, 29 (04) : 371 - 377
  • [24] Genetic testing for familial hypercholesterolemia: Impact on diagnosis, treatment and cardiovascular risk
    Lee, Seohyuk
    Akioyamen, Leo E.
    Aljenedil, Sumayah
    Riviere, Jean-Baptiste
    Ruel, Isabelle
    Genest, Jacques
    EUROPEAN JOURNAL OF PREVENTIVE CARDIOLOGY, 2019, 26 (12) : 1262 - 1270
  • [25] The relationship of molecular genetic to clinical diagnosis of familial hypercholesterolemia in a Danish population
    Damgaard, D
    Larsen, ML
    Nissen, PH
    Jensen, JA
    Jensen, HK
    Soerensen, VR
    Jensen, LG
    Faergeman, O
    ATHEROSCLEROSIS, 2005, 180 (01) : 155 - 160
  • [26] Genetic Testing in Familial Hypercholesterolemia Strengthening the Tools, Reinforcing Efforts, and Diagnosis
    Abifadel, Marianne S.
    Rabes, Jean-Pierre H.
    Boileau, Catherine R.
    JACC-BASIC TO TRANSLATIONAL SCIENCE, 2021, 6 (11): : 831 - 833
  • [27] Mutational analysis of a cohort with clinical diagnosis of familial hypercholesterolemia: considerations for genetic diagnosis improvement
    Medeiros, Ana Margarida
    Alves, Ana Catarina
    Bourbon, Mafalda
    GENETICS IN MEDICINE, 2016, 18 (04) : 316 - 324
  • [28] Use of Targeted Exome Sequencing in Genetic Diagnosis of Chinese Familial Hypercholesterolemia
    Wu, Wen-Feng
    Sun, Li-Yuan
    Pan, Xiao-Dong
    Yang, Shi-Wei
    Wang, Lv-Ya
    PLOS ONE, 2014, 9 (04):
  • [29] Advancing Prediction of Pathogenicity of Familial Hypercholesterolemia LDL Receptor Commonest Variants With Machine Learning Models
    Santos, Raul D.
    JACC-BASIC TO TRANSLATIONAL SCIENCE, 2021, 6 (11): : 828 - 830
  • [30] Genetic Counseling and Genetic Testing for Familial Hypercholesterolemia
    Tada, Hayato
    Kawashiri, Masa-aki
    Nohara, Atsushi
    Sekiya, Tomoko
    Watanabe, Atsushi
    Takamura, Masayuki
    GENES, 2024, 15 (03)