Virtual genetic diagnosis for familial hypercholesterolemia powered by machine learning

被引:32
|
作者
Pina, Ana [1 ,2 ,3 ]
Helgadottir, Saga [4 ]
Mancina, Rosellina Margherita [5 ]
Pavanello, Chiara [6 ]
Pirazzi, Carlo [7 ]
Montalcini, Tiziana [8 ]
Henriques, Roberto [9 ]
Calabresi, Laura [6 ]
Wiklund, Olov [5 ]
Macedo, M. Paula [1 ,2 ,3 ]
Valenti, Luca [10 ,11 ]
Volpe, Giovanni [4 ]
Romeo, Stefano [5 ,7 ,8 ]
机构
[1] Univ Nova Lisboa, NOVA Med Sch, CEDOC, Fac Ciencias Med, Lisbon, Portugal
[2] Portuguese Diabet Assoc, Educ & Res Ctr APDP ERC, Lisbon, Portugal
[3] Univ Aveiro, Dept Med Sci, Aveiro, Portugal
[4] Univ Gothenburg, Dept Phys, Gothenburg, Sweden
[5] Univ Gothenburg, Sahlgrenska Acad, Inst Med, Wallenberg Lab,Dept Mol & Clin Med, Bruna Straket 16, SE-41345 Gothenburg, Sweden
[6] Univ Milan, Ctr E Grossi Paoletti, Dipartimento Sci Farmacol & Biomol, Milan, Italy
[7] Sahlgrens Univ Hosp, Dept Cardiol, Gothenburg, Sweden
[8] Magna Graecia Univ Catanzaro, Dept Med & Surg Sci, Clin Nutr Unit, Catanzaro, Italy
[9] NOVA Informat Management Sch, Campus Campolide, Lisbon, Portugal
[10] Univ Milan, Fdn IRCCS CaGranda Osped Maggiore Policlin, Dept Transfus Med & Hematol, Translat Med, Milan, Italy
[11] Univ Milan, Dept Pathophysiol & Transplantat, Milan, Italy
基金
瑞典研究理事会; 欧盟地平线“2020”;
关键词
Familial hypercholesterolemia; prediction model; machine learning; dyslipidemia; cardiovascular disease; FATTY LIVER; POPULATION; DYSLIPIDEMIA; METABOLISM;
D O I
10.1177/2047487319898951
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Aims Familial hypercholesterolemia (FH) is the most common genetic disorder of lipid metabolism. The gold standard for FH diagnosis is genetic testing, available, however, only in selected university hospitals. Clinical scores - for example, the Dutch Lipid Score - are often employed as alternative, more accessible, albeit less accurate FH diagnostic tools. The aim of this study is to obtain a more reliable approach to FH diagnosis by a "virtual" genetic test using machine-learning approaches. Methods and results We used three machine-learning algorithms (a classification tree (CT), a gradient boosting machine (GBM), a neural network (NN)) to predict the presence of FH-causative genetic mutations in two independent FH cohorts: the FH Gothenburg cohort (split into training data (N = 174) and internal test (N = 74)) and the FH-CEGP Milan cohort (external test, N = 364). By evaluating their area under the receiver operating characteristic (AUROC) curves, we found that the three machine-learning algorithms performed better (AUROC 0.79 (CT), 0.83 (GBM), and 0.83 (NN) on the Gothenburg cohort, and 0.70 (CT), 0.78 (GBM), and 0.76 (NN) on the Milan cohort) than the clinical Dutch Lipid Score (AUROC 0.68 and 0.64 on the Gothenburg and Milan cohorts, respectively) in predicting carriers of FH-causative mutations. Conclusion In the diagnosis of FH-causative genetic mutations, all three machine-learning approaches we have tested outperform the Dutch Lipid Score, which is the clinical standard. We expect these machine-learning algorithms to provide the tools to implement a virtual genetic test of FH. These tools might prove particularly important for lipid clinics without access to genetic testing.
引用
收藏
页码:1639 / 1646
页数:8
相关论文
共 50 条
  • [11] A Data-Driven Comparative Analysis of Machine-Learning Models for Familial Hypercholesterolemia Detection
    Kocejko, Tomasz
    APPLIED SCIENCES-BASEL, 2024, 14 (23):
  • [12] Preliminary spectrum of genetic variants in familial hypercholesterolemia in Argentina
    Banares, Virginia G.
    Corral, Pablo
    Margarida Medeiros, Ana
    Beatriz Araujo, Maria
    Lozada, Alfredo
    Bustamante, Juan
    Cerretini, Roxana
    Lopez, Graciela
    Bourbon, Mafalda
    Schreier, Laura E.
    JOURNAL OF CLINICAL LIPIDOLOGY, 2017, 11 (02) : 524 - 531
  • [13] Diagnosis and treatment of familial hypercholesterolemia in Spain: Consensus document
    Mata, Pedro
    Alonso, Rodrigo
    Ruiz, Antonio
    Gonzalez-Juanatey, Jose R.
    Badimon, Lina
    Diaz-Diaz, Jose L.
    Teresa Munoz, Maria
    Muniz, Ovidio
    Galve, Enrique
    Irigoyen, Luis
    Fuentes-Jimenez, Francisco
    Dalmau, Jaime
    Perez-Jimenez, Francisco
    ATENCION PRIMARIA, 2015, 47 (01): : 56 - 65
  • [14] Diagnosis and Management of Individuals With Heterozygous Familial Hypercholesterolemia: Too Late and Too Little
    Hovingh, G. Kees
    Kastelein, John J. P.
    CIRCULATION, 2016, 134 (10) : 710 - 712
  • [15] Molecular diagnosis methods in familial hypercholesterolemia
    Moldovan, Valeriu
    Banescu, Claudia
    Dobreanu, Minodora
    ANATOLIAN JOURNAL OF CARDIOLOGY, 2020, 23 (03) : 120 - 127
  • [16] Clinical Genetic Testing for Familial Hypercholesterolemia
    Sturm, Amy C.
    Knowles, Joshua W.
    Gidding, Samuel S.
    Ahmad, Zahid S.
    Ahmed, Catherine D.
    Ballantyne, Christie M.
    Baum, Seth J.
    Bourbon, Mafalda
    Carrie, Alain
    Cuchel, Marina
    de Ferranti, Sarah D.
    Defesche, Joep C.
    Freiberger, Tomas
    Hershberger, Ray E.
    Hovingh, G. Kees
    Karayan, Lala
    Kastelein, Johannes Jacob Pieter
    Kindt, Iris
    Lane, Stacey R.
    Leigh, Sarah E.
    Linton, MacRae F.
    Mata, Pedro
    Neal, William A.
    Nordestgaard, Borge G.
    Santos, Raul D.
    Harada-Shiba, Mariko
    Sijbrands, Eric J.
    Stitziel, Nathan O.
    Yamashita, Shizuya
    Wilemon, Katherine A.
    Ledbetter, David H.
    Rader, Daniel J.
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2018, 72 (06) : 662 - 680
  • [17] The past, present and future of molecular genetic diagnosis in familial hypercholesterolemia
    Thomas, Ellen R. A.
    CLINICAL LIPIDOLOGY, 2015, 10 (05) : 379 - 385
  • [18] Cascade screening and genetic diagnosis of familial hypercholesterolemia in clusters of the Southeastern region from Brazil
    de Paiva Silvino, Junea Paolucci
    Jannes, Cinthia Elim
    Tada, Mauricio Teruo
    Lima, Isabella Ramos
    Oliveira Silva, Ieda de Fatima
    Pereira, Alexandre Costa
    Gomes, Karina Braga
    MOLECULAR BIOLOGY REPORTS, 2020, 47 (12) : 9279 - 9288
  • [19] Genetic diagnosis of familial hypercholesterolemia is associated with a premature and high coronary heart disease risk
    Seguro, Florent
    Rabes, Jean-Pierre
    Taraszkiewicz, Dorota
    Ruidavets, Jean-Bernard
    Bongard, Vanina
    Ferrieres, Jean
    CLINICAL CARDIOLOGY, 2018, 41 (03) : 385 - 391
  • [20] Cascade screening and genetic diagnosis of familial hypercholesterolemia in clusters of the Southeastern region from Brazil
    Júnea Paolucci de Paiva Silvino
    Cinthia Elim Jannes
    Mauricio Teruo Tada
    Isabella Ramos Lima
    Iêda de Fátima Oliveira Silva
    Alexandre Costa Pereira
    Karina Braga Gomes
    Molecular Biology Reports, 2020, 47 : 9279 - 9288