Virtual genetic diagnosis for familial hypercholesterolemia powered by machine learning

被引:34
作者
Pina, Ana [1 ,2 ,3 ]
Helgadottir, Saga [4 ]
Mancina, Rosellina Margherita [5 ]
Pavanello, Chiara [6 ]
Pirazzi, Carlo [7 ]
Montalcini, Tiziana [8 ]
Henriques, Roberto [9 ]
Calabresi, Laura [6 ]
Wiklund, Olov [5 ]
Macedo, M. Paula [1 ,2 ,3 ]
Valenti, Luca [10 ,11 ]
Volpe, Giovanni [4 ]
Romeo, Stefano [5 ,7 ,8 ]
机构
[1] Univ Nova Lisboa, NOVA Med Sch, CEDOC, Fac Ciencias Med, Lisbon, Portugal
[2] Portuguese Diabet Assoc, Educ & Res Ctr APDP ERC, Lisbon, Portugal
[3] Univ Aveiro, Dept Med Sci, Aveiro, Portugal
[4] Univ Gothenburg, Dept Phys, Gothenburg, Sweden
[5] Univ Gothenburg, Sahlgrenska Acad, Inst Med, Wallenberg Lab,Dept Mol & Clin Med, Bruna Straket 16, SE-41345 Gothenburg, Sweden
[6] Univ Milan, Ctr E Grossi Paoletti, Dipartimento Sci Farmacol & Biomol, Milan, Italy
[7] Sahlgrens Univ Hosp, Dept Cardiol, Gothenburg, Sweden
[8] Magna Graecia Univ Catanzaro, Dept Med & Surg Sci, Clin Nutr Unit, Catanzaro, Italy
[9] NOVA Informat Management Sch, Campus Campolide, Lisbon, Portugal
[10] Univ Milan, Fdn IRCCS CaGranda Osped Maggiore Policlin, Dept Transfus Med & Hematol, Translat Med, Milan, Italy
[11] Univ Milan, Dept Pathophysiol & Transplantat, Milan, Italy
基金
瑞典研究理事会; 欧盟地平线“2020”;
关键词
Familial hypercholesterolemia; prediction model; machine learning; dyslipidemia; cardiovascular disease; FATTY LIVER; POPULATION; DYSLIPIDEMIA; METABOLISM;
D O I
10.1177/2047487319898951
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Aims Familial hypercholesterolemia (FH) is the most common genetic disorder of lipid metabolism. The gold standard for FH diagnosis is genetic testing, available, however, only in selected university hospitals. Clinical scores - for example, the Dutch Lipid Score - are often employed as alternative, more accessible, albeit less accurate FH diagnostic tools. The aim of this study is to obtain a more reliable approach to FH diagnosis by a "virtual" genetic test using machine-learning approaches. Methods and results We used three machine-learning algorithms (a classification tree (CT), a gradient boosting machine (GBM), a neural network (NN)) to predict the presence of FH-causative genetic mutations in two independent FH cohorts: the FH Gothenburg cohort (split into training data (N = 174) and internal test (N = 74)) and the FH-CEGP Milan cohort (external test, N = 364). By evaluating their area under the receiver operating characteristic (AUROC) curves, we found that the three machine-learning algorithms performed better (AUROC 0.79 (CT), 0.83 (GBM), and 0.83 (NN) on the Gothenburg cohort, and 0.70 (CT), 0.78 (GBM), and 0.76 (NN) on the Milan cohort) than the clinical Dutch Lipid Score (AUROC 0.68 and 0.64 on the Gothenburg and Milan cohorts, respectively) in predicting carriers of FH-causative mutations. Conclusion In the diagnosis of FH-causative genetic mutations, all three machine-learning approaches we have tested outperform the Dutch Lipid Score, which is the clinical standard. We expect these machine-learning algorithms to provide the tools to implement a virtual genetic test of FH. These tools might prove particularly important for lipid clinics without access to genetic testing.
引用
收藏
页码:1639 / 1646
页数:8
相关论文
共 22 条
[1]   Finding missed cases of familial hypercholesterolemia in health systems using machine learning [J].
Banda, Juan M. ;
Sarraju, Ashish ;
Abbasi, Fahim ;
Parizo, Justin ;
Pariani, Mitchel ;
Ison, Hannah ;
Briskin, Elinor ;
Wand, Hannah ;
Dubois, Sebastien ;
Jung, Kenneth ;
Myers, Seth A. ;
Rader, Daniel J. ;
Leader, Joseph B. ;
Murray, Michael F. ;
Myers, Kelly D. ;
Wilemon, Katherine ;
Shah, Nigam H. ;
Knowles, Joshua W. .
NPJ DIGITAL MEDICINE, 2019, 2 (1)
[2]   Familial Hypercholesterolemia in the Danish General Population: Prevalence, Coronary Artery Disease, and Cholesterol-Lowering Medication [J].
Benn, Marianne ;
Watts, Gerald F. ;
Tybjaerg-Hansen, Anne ;
Nordestgaard, Borge G. .
JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 2012, 97 (11) :3956-3964
[3]   Selection of individuals for genetic testing for familial hypercholesterolaemia: development and external validation of a prediction model for the presence of a mutation causing familial hypercholesterolaemia [J].
Besseling, Joost ;
Reitsma, Johannes B. ;
Gaudet, Daniel ;
Brisson, Diane ;
Kastelein, John J. P. ;
Hovingh, G. Kees ;
Hutten, Barbara A. .
EUROPEAN HEART JOURNAL, 2017, 38 (08) :565-+
[4]  
Canty A, BOOT BOOTSTRAP R S P
[5]   Evaluation of the performance of Dutch Lipid Clinic Network score in an Italian FH population: The LIPIGEN study [J].
Casula, Manuela ;
Olmastroni, Elena ;
Pirillo, Angela ;
Catapano, Alberico Luigi .
ATHEROSCLEROSIS, 2018, 277 :413-418
[6]   Opportunities and obstacles for deep learning in biology and medicine [J].
Ching, Travers ;
Himmelstein, Daniel S. ;
Beaulieu-Jones, Brett K. ;
Kalinin, Alexandr A. ;
Do, Brian T. ;
Way, Gregory P. ;
Ferrero, Enrico ;
Agapow, Paul-Michael ;
Zietz, Michael ;
Hoffman, Michael M. ;
Xie, Wei ;
Rosen, Gail L. ;
Lengerich, Benjamin J. ;
Israeli, Johnny ;
Lanchantin, Jack ;
Woloszynek, Stephen ;
Carpenter, Anne E. ;
Shrikumar, Avanti ;
Xu, Jinbo ;
Cofer, Evan M. ;
Lavender, Christopher A. ;
Turaga, Srinivas C. ;
Alexandari, Amr M. ;
Lu, Zhiyong ;
Harris, David J. ;
DeCaprio, Dave ;
Qi, Yanjun ;
Kundaje, Anshul ;
Peng, Yifan ;
Wiley, Laura K. ;
Segler, Marwin H. S. ;
Boca, Simina M. ;
Swamidass, S. Joshua ;
Huang, Austin ;
Gitter, Anthony ;
Greene, Casey S. .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2018, 15 (141)
[7]   Lipoprotein Metabolism, Dyslipidemia, and Nonalcoholic Fatty Liver Disease [J].
Cohen, David E. ;
Fisher, Edward A. .
SEMINARS IN LIVER DISEASE, 2013, 33 (04) :380-388
[8]  
Defesche Joep C, 2004, Semin Vasc Med, V4, P59
[9]   INFLUENCE OF AGE ON THE METABOLISM OF PLASMA LOW-DENSITY LIPOPROTEINS IN HEALTHY-MALES [J].
ERICSSON, S ;
ERIKSSON, M ;
VITOLS, S ;
EINARSSON, K ;
BERGLUND, L ;
ANGELIN, B .
JOURNAL OF CLINICAL INVESTIGATION, 1991, 87 (02) :591-596
[10]   Health literacy in familial hypercholesterolemia: A cross-national study [J].
Hagger, Martin S. ;
Hardcastle, Sarah J. ;
Hu, Miao ;
Kwok, See ;
Lin, Jie ;
Nawawi, Hapizah M. ;
Pang, Jing ;
Santos, Raul D. ;
Soran, Handrean ;
Su, Ta-Chen ;
Tomlinson, Brian ;
Watts, Gerald F. .
EUROPEAN JOURNAL OF PREVENTIVE CARDIOLOGY, 2018, 25 (09) :936-943