Scalable Metropolis Monte Carlo for simulation of hard shapes

被引:71
|
作者
Anderson, Joshua A. [1 ]
Irrgang, M. Eric [2 ]
Glotzer, Sharon C. [1 ,2 ]
机构
[1] Univ Michigan, Dept Chem Engn, 2800 Plymouth Rd, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Mat Sci & Engn, 2300 Hayward St, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
Monte Carlo; Hard particle; GPU; MOLECULAR-DYNAMICS SIMULATIONS; DISSIPATIVE PARTICLE DYNAMICS; PARALLEL; ALGORITHMS; ELLIPSOIDS; ENSEMBLE; SYSTEMS; CUBES; ORDER; GPUS;
D O I
10.1016/j.cpc.2016.02.024
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We design and implement a scalable hard particle Monte Carlo simulation toolkit (HPMC), and release it open source as part of HOOMD-blue. HPMC runs in parallel on many CPUs and many GPUs using domain decomposition. We employ BVH trees instead of cell lists on the CPU for fast performance, especially with large particle size disparity, and optimize inner loops with SIMD vector intrinsics on the CPU. Our GPU kernel proposes many trial moves in parallel on a checkerboard and uses a block level queue to redistribute work among threads and avoid divergence. HPMC supports a wide variety of shape classes, including spheres/disks, unions of spheres, convex polygons, convex spheropolygons, concave polygons, ellipsoids/ellipses, convex polyhedra, convex spheropolyhedra, spheres cut by planes, and concave polyhedra. NVT and NPT ensembles can be run in 2D or 3D triclinic boxes. Additional integration schemes permit Frenkel-Ladd free energy computations and implicit depletant simulations. In a benchmark system of a fluid of 4096 pentagons, HPMC performs 10 million sweeps in 10 min on 96 CPU cores on XSEDE Comet. The same simulation would take 7.6 h in serial. HPMC also scales to large system sizes, and the same benchmark with 16.8 million particles runs in 1.4 h on 2048 GPUs on OLCF Titan. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:21 / 30
页数:10
相关论文
共 50 条
  • [1] Metropolis Monte Carlo simulation of lattice animals
    vanRensburg, EJJ
    Madras, N
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (23): : 8035 - 8066
  • [2] MONTE CARLO SIMULATION OF UTILITY FUNCTION SHAPES
    Vrbova, Lucie
    Hajek, Jiri
    8TH INTERNATIONAL DAYS OF STATISTICS AND ECONOMICS, 2014, : 1633 - 1642
  • [3] MONTE-CARLO SIMULATION OF HARD SPHEROIDS
    PERRAM, JW
    WERTHEIM, MS
    LEBOWITZ, JL
    WILLIAMS, GO
    CHEMICAL PHYSICS LETTERS, 1984, 105 (03) : 277 - 280
  • [4] METROPOLIS MONTE-CARLO SIMULATION OF FLUIDS WITH MULTIPARTICLE MOVES
    CHAPMAN, W
    QUIRKE, N
    PHYSICA B & C, 1985, 131 (1-3): : 34 - 40
  • [5] METROPOLIS MONTE CARLO SIMULATION OF FLUIDS WITH MULTIPARTICLE MOVES.
    Chapman, W.
    Quirke, N.
    Physica B: Physics of Condensed Matter & C: Atomic, Molecular and Plasma Physics, Optics, 1984, 131 (1-3): : 34 - 40
  • [6] Monte Carlo simulation of the shapes of domains in phospholipid monolayers
    Mayer, MA
    Vanderlick, TK
    PHYSICAL REVIEW E, 1997, 55 (01) : 1106 - 1119
  • [7] Metropolis Monte Carlo deconvolution
    Amini, AM
    VISUAL INFORMATION PROCESSING VIII, 1999, 3716 : 252 - 262
  • [8] Metropolis Monte Carlo Annealing
    Amini, AM
    VISUAL INFORMATION PROCESSING IX, 2000, 4041 : 163 - 171
  • [9] Monte Carlo simulation of a binary mixture of hard rods and hard spheres
    Koda, T
    Sato, Y
    Ikeda, S
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2000, (138): : 476 - 477
  • [10] Monte Carlo simulation of a confined hard ellipse fluid
    Moradi, M.
    Hashemi, S.
    Taghizadeh, F.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2010, 389 (21) : 4510 - 4519