Two-sided two-cosided Hopf modules and Doi-Hopf modules for quasi-Hopf algebras

被引:15
作者
Bulacu, D
Caenepeel, S
机构
[1] Free Univ Brussels, Fac Sci Appl, B-1050 Brussels, Belgium
[2] Univ Bucharest, Fac Math, RO-70109 Bucharest 1, Romania
关键词
D O I
10.1016/j.jalgebra.2003.07.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let H be a finite-dimensional quasi-Hopf algebra over a field k and A a right H-comodule algebra. We introduce the category of two-sided Hopf modules, and prove that it is isomorphic to a module category. We also show that two-sided Hopf modules are coalgebra over a certain comonad. We introduce Doi-Hopf modules, and show that they are comodules over a certain coring. If the underlying H-module coalgebra is finite-dimensional, then Doi Hopf modules are modules over a certain smash products. A similar result holds for two-sided two-cosided Hopf modules. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:55 / 95
页数:41
相关论文
共 27 条
[1]   Quasialgebra structure of the octonions [J].
Albuquerque, H ;
Majid, S .
JOURNAL OF ALGEBRA, 1999, 220 (01) :188-224
[2]  
ALBUQUERQUE H, 1999, TEXTOS MATH B, V19, P47
[3]   QUASI-QUANTUM GROUPS, KNOTS, 3-MANIFOLDS, AND TOPOLOGICAL FIELD-THEORY [J].
ALTSCHULER, D ;
COSTE, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 150 (01) :83-107
[4]   The categories of Yetter-Drinfel'd modules, Doi-Hopf modules and two-sided two-cosided Hopf modules [J].
Beattie, M ;
Dascalescu, S ;
Raianu, S ;
van Oystaeyen, F .
APPLIED CATEGORICAL STRUCTURES, 1998, 6 (02) :223-237
[5]   The structure of corings: Induction functors, Maschke-type theorem, and Frobenius and Galois-type properties [J].
Brzezinski, T .
ALGEBRAS AND REPRESENTATION THEORY, 2002, 5 (04) :389-410
[6]   Relative Hopf modules for (dual) quasi-Hopf algebras [J].
Bulacu, D ;
Nauwelaerts, E .
JOURNAL OF ALGEBRA, 2000, 229 (02) :632-659
[7]   A generalization of the quasi-Hopf algebra Dω(G) [J].
Bulacu, D ;
Panaite, F .
COMMUNICATIONS IN ALGEBRA, 1998, 26 (12) :4125-4141
[8]   Quasi-Hopf algebra actions and smash products [J].
Bulacu, D ;
Panaite, F ;
Van Oystaeyen, F .
COMMUNICATIONS IN ALGEBRA, 2000, 28 (02) :631-651
[9]   Crossed modules and Doi-Hopf modules [J].
Caenepeel, S ;
Militaru, G ;
Zhu, SL .
ISRAEL JOURNAL OF MATHEMATICS, 1997, 100 (1) :221-247
[10]   Hopf bimodules are modules [J].
Cibils, C ;
Rosso, M .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1998, 128 (03) :225-231