Stable finiteness properties of infinite discrete groups

被引:5
作者
Barcenas, Noe [1 ]
Degrijse, Dieter [2 ]
Patchkoria, Irakli [3 ]
机构
[1] Univ Nacl Autonoma Mexico, Ctr Ciencias Matemat, Campus Morelia Apartado Postal 61-3 Xangari, Morelia 58089, Michoacan, Mexico
[2] Univ Copenhagen, Dept Math Sci, Univ Pk 5, DK-2100 Copenhagen, Denmark
[3] Univ Bonn, Math Inst, Endenicher Allee 60, D-53115 Bonn, Germany
基金
新加坡国家研究基金会;
关键词
GEOMETRIC DIMENSION; MACKEY FUNCTORS; SUBGROUPS; SPACES; FAMILY;
D O I
10.1112/topo.12035
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be an infinite discrete group. A classifying space for proper actions of G is a proper G-CW complex X such that the fixed point sets XH are contractible for all finite subgroups H of G. In this paper we consider the stable analogue of the classifying space for proper actions in the category of proper G-spectra and study its finiteness properties. We investigate when G admits a stable classifying space for proper actions that is finite or of finite type and relate these conditions to the compactness of the sphere spectrum in the homotopy category of proper G-spectra and to classical finiteness properties of the Weyl groups of finite subgroups of G. Finally, if the group G is virtually torsion-free we also show that the smallest possible dimension of a stable classifying space for proper actions coincides with the virtual cohomological dimension of G, thus providing the first geometric interpretation of the virtual cohomological dimension of a group.
引用
收藏
页码:1169 / 1196
页数:28
相关论文
共 44 条
[1]  
ADEM A, 2003, SEM N BOURB 2001 200, P1
[2]  
[Anonymous], 1967, Lecture Notes in Mathematics
[3]  
[Anonymous], 2005, PROGR MATH
[4]  
[Anonymous], 1996, CBMS REG C SERIES MA
[5]  
[Anonymous], 1996, Methods of Homological Algebra
[6]  
[Anonymous], 1994, CAMBRIDGE STUD ADV M
[7]   Geometric dimension of lattices in classical simple Lie groups [J].
Aramayona, Javier ;
Degrijse, Dieter ;
Martinez-Perez, Conchita ;
Souto, Juan .
JOURNAL OF TOPOLOGY, 2017, 10 (02) :632-667
[8]   The proper geometric dimension of the mapping class group [J].
Aramayona, Javier ;
Martinez-Perez, Conchita .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2014, 14 (01) :217-227
[9]   Morse theory and finiteness properties of groups [J].
Bestvina, M ;
Brady, N .
INVENTIONES MATHEMATICAE, 1997, 129 (03) :445-470
[10]  
BIERI R, 1974, COMMENT MATH HELV, V49, P74, DOI 10.1007/BF02566720