Coherent States of Position-Dependent Mass Oscillator

被引:0
作者
Dehdashti, Shahram [1 ]
Mahdifar, Ali [2 ]
Wang, Huaping [3 ]
机构
[1] Zhejiang Univ, Coll Informat Sci & Elect Engn, Hangzhou 310027, Peoples R China
[2] Shahrekord Univ, Dept Sci, Shahrekord 8818634141, Iran
[3] Zhejiang Univ, Ocean Coll, Hangzhou 310058, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Gazeau-Klauder Lambda-dependent coherent state; Displacement-type Lambda-dependent coherent states; Mandel's Q parameter; Fubini-Study metric; CONTINUOUS-REPRESENTATION THEORY; SCHRODINGER-EQUATION; HARMONIC-OSCILLATOR; QUANTUM; POTENTIALS; EIGENVALUES; DECOHERENCE; SPHERE; MODEL;
D O I
10.1007/s10773-016-2985-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we study Gazeau-Klauder and displacement-type coherent states of two-dimensional position-dependent mass oscillators, which is called I >-dependent oscillators and I > can be interpreted as the curvatures of the spherical and the hyperbolic spaces, on which oscillators are constrained. In addition, we consider the effect of I > parameter on the physical properties of these coherent states, including minimized Heisenberg uncertainty relation and Mandel's Q parameter. We also elaborate the relation between the curvature of the physical space and the curvature of the I >-dependent coherent state manifold.
引用
收藏
页码:3564 / 3578
页数:15
相关论文
共 63 条
[1]  
Arfken G.B., 2001, Mathematical methods for physicists
[2]   New approach to (quasi-) exactly solvable Schrodinger equations with a position-dependent effective mass [J].
Bagchi, B ;
Gorain, P ;
Quesne, C ;
Roychoudhury, R .
EUROPHYSICS LETTERS, 2005, 72 (02) :155-161
[3]   Structure and energetics of mixed He-4-He-3 drops [J].
Barranco, M ;
Pi, M ;
Gatica, SM ;
Hernandez, ES ;
Navarro, J .
PHYSICAL REVIEW B, 1997, 56 (14) :8997-9003
[4]  
Bengtsson I., 2017, GEOMETRY QUANTUM STA, DOI DOI 10.1017/9781139207010
[5]   Construction of photon-added spin coherent states and their statistical properties [J].
Berrada, K. .
JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (07)
[6]   EXACT SOLUTION OF THE SCHRODINGER-EQUATION FOR THE CENTRAL NONPOLYNOMIAL POTENTIAL V(R)=R2+LAMBDAR2/(1+GR2) IN 2 AND 3 DIMENSIONS [J].
BOSE, SK ;
VARMA, N .
PHYSICS LETTERS A, 1989, 141 (3-4) :141-146
[7]  
Buchleitner A., 2009, ENTANGLEMENT DECOCHE
[8]   A nonlinear deformation of the isotonic oscillator and the Smorodinski-Winternitz system:: Integrability and superintegrability [J].
Cariñena, JF ;
Rañada, MF ;
Santander, M .
REGULAR & CHAOTIC DYNAMICS, 2005, 10 (04) :423-436
[9]   One-dimensional model of a quantum nonlinear harmonic oscillator [J].
Cariñena, JF ;
Rañada, MF ;
Santander, M .
REPORTS ON MATHEMATICAL PHYSICS, 2004, 54 (02) :285-293
[10]   The quantum harmonic oscillator on the sphere and the hyperbolic plane [J].
Carinena, Jose F. ;
Ranada, Manuel F. ;
Santander, Mariano .
ANNALS OF PHYSICS, 2007, 322 (10) :2249-2278