A CFD approach on simulation of hydrogen production from steam reforming of glycerol in a fluidized bed reactor

被引:45
|
作者
Dou, Binlin [1 ]
Song, Yongchen [1 ]
机构
[1] Dalian Univ Technol, Minist Educ, Key Lab Ocean Energy Utilizat & Energy Conservat, Sch Energy & Power Engn, Dalian 116023, Peoples R China
关键词
CFD; Simulation; Glycerol; Steam reforming; Fluidized bed reactor; GAS-SOLID FLOW; THERMODYNAMIC ANALYSIS; KINETICS; HYDRODYNAMICS; ETHANOL; MODEL; DRAG;
D O I
10.1016/j.ijhydene.2010.07.165
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hydrogen production from steam reforming of glycerol in a fluidized bed reactor has been simulated using a CFD method by an additional transport equation with a kinetic term. The Eulerian-Eulerian two-fluid approach was adopted to simulate hydrodynamics of fluidization, and chemical reactions were modelled by laminar finite-rate model. The bed expansion and pressure drop were predicted for different inlet gas velocities. The results showed that the flow system exhibited a more heterogeneous structure, and the core-annulus structure of gas solid flow led to back-mixing and internal circulation behaviour, and thus gave a poor velocity distribution. This suggests the bed should be agitated to maintain satisfactory fluidizing conditions. Glycerol conversion and H-2 production were decreased with increasing inlet gas velocity. The increase in the value of steam to carbon molar ratio increases the conversion of glycerol and H-2 selectivity. H-2 concentrations in the bed were uneven and increased downstream and high concentrations of H-2 production were also found on walls. The model demonstrated a relationship between hydrodynamics and hydrogen production, implying that the residence time and steam to carbon molar ratio are important parameters. The CFD simulation will provide helpful data to design and operate a bench scale catalytic fluidized bed reactor. (C) 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:10271 / 10284
页数:14
相关论文
共 50 条
  • [1] Experiments on hydrogen production from methanol steam reforming in fluidized bed reactor
    Shi, Yingshuang
    Du, Xiaoze
    Yang, Lijun
    Sun, Ying
    Yang, Yongping
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (32) : 13974 - 13981
  • [2] Enhancement of membrane hydrogen separation on glycerol steam reforming in a fluidized bed reactor
    Yang, Xuesong
    Wang, Shuai
    Li, Zhenjie
    Zhang, Kai
    Li, Bowen
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (41) : 18863 - 18872
  • [3] CFD modeling of hydrogen production from glycerol steam reforming in Tesla microchannel reactor
    Zakeri, Reza
    Fazeli, Ali
    FUEL, 2024, 357
  • [4] Steam reforming of propane in a fluidized bed membrane reactor for hydrogen production
    Rakib, Mohammad A.
    Grace, John R.
    Lim, C. Jim
    Elnashaie, Said S. E. H.
    Ghiasi, Bahman
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (12) : 6276 - 6290
  • [5] Kinetics for hydrogen production by methanol steam reforming in fluidized bed reactor
    Fuxiang Zhang
    Yingshuang Shi
    Lijun Yang
    Xiaoze Du
    ScienceBulletin, 2016, 61 (05) : 401 - 405
  • [6] Kinetics for hydrogen production by methanol steam reforming in fluidized bed reactor
    Zhang, Fuxiang
    Shi, Yingshuang
    Yang, Lijun
    Du, Xiaoze
    SCIENCE BULLETIN, 2016, 61 (05) : 401 - 405
  • [7] Hydrogen production from fluidized bed steam reforming of hydrocarbons
    Lee, JK
    Park, D
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 1998, 15 (06) : 658 - 662
  • [8] Enhancement of Hydrogen Production for Steam Reforming of Biogas in Fluidized Bed Membrane Reactor
    Saebea, Dang
    Authayanun, Suthida
    Patcharavorachot, Yaneeporn
    Arpornwichanop, Amornchai
    PRES 2014, 17TH CONFERENCE ON PROCESS INTEGRATION, MODELLING AND OPTIMISATION FOR ENERGY SAVING AND POLLUTION REDUCTION, PTS 1-3, 2014, 39 : 1177 - +
  • [9] Hydrogen production from fluidized bed steam reforming of hydrocarbons
    Joong Kee Lee
    Dalkeun Park
    Korean Journal of Chemical Engineering, 1998, 15 : 658 - 662
  • [10] Modeling of a Fluidized Bed Membrane Reactor for Hydrogen Production by Steam Reforming of Hydrocarbons
    Rakib, Mohammad A.
    Grace, John R.
    Lim, C. Jim
    Elnashaie, Said S. E. H.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2011, 50 (06) : 3110 - 3129