Root system adjustments:: regulation of plant nutrient uptake and growth responses to elevated CO2

被引:96
|
作者
BassiriRad, H
Gutschick, VP
Lussenhop, J
机构
[1] Univ Illinois, Dept Biol Sci, Chicago, IL 60607 USA
[2] New Mexico State Univ, Dept Biol Sci, Las Cruces, NM 88003 USA
关键词
elevated CO2; nutrients; root system adjustments; mycorrhizae;
D O I
10.1007/s004420000524
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Nutrients such as nitrogen (N) and phosphorus (P) often limit plant growth rate and production in natural and agricultural ecosystems. Limited availability of these nutrients is also a major factor influencing longterm plant and ecosystem responses to rising atmospheric CO2 levels, i.e., the commonly observed short-term increase in plant biomass may not be sustained over the long-term. Therefore, it is critical to obtain a mechanistic understanding of whether elevated CO2 can elicit compensatory adjustments such that acquisition capacity for minerals increases in concert with carbon (C) uptake. Compensatory adjustments such as increases in (a) root mycorrhizal infection, (b) root-to-shoot ratio and changes in root morphology and architecture, (c) root nutrient absorption capacity, and (d) nutrient-use efficiency can enable plants to meet an increased nutrient demand under high CO2. Here we examine the literature to assess the extent to which these mechanisms have been shown to respond to high CO2. The literature survey reveals no consistent pattern either in direction or magnitude of responses of these mechanisms to high CO2. This apparent lack of a pattern may represent variations in experimental protocol and/or interspecific differences. We found that in addressing nutrient uptake responses to high CO2 most investigators have examined these mechanisms in isolation. Because such mechanisms can potentially counterbalance one another, a more reliable prediction of elevated CO2 responses requires experimental designs that integrate all mechanisms simultaneously. Finally, we present a functional balance (FB) model as an example of how root system adjustments and nitrogen-use efficiency can be integrated to assess growth responses to high CO2. The FB model suggests that the mechanisms of increased N uptake highlighted here have different weights in determining overall plant responses to high CO2. For example, while changes in root-to-shoot biomass allocation, r, have a small effect on growth, adjustments in uptake rate per unit root mass, <(<nu>)over bar>, and photosynthetic N use efficiency, p*, have a significantly greater leverage on growth responses to elevated CO2 except when relative growth rate (RGR) reaches its developmental limit, maximum RGR (RGR(max)).
引用
收藏
页码:305 / 320
页数:16
相关论文
共 50 条
  • [1] Root system adjustments: regulation of plant nutrient uptake and growth responses to elevated CO2
    Hormoz BassiriRad
    Vincent Peter Gutschick
    John Lussenhop
    Oecologia, 2001, 126 : 305 - 320
  • [2] Plant biomass responses to elevated CO2 are mediated by phosphorus uptake
    Han, Ximei
    Zhou, Guiyao
    Luo, Qin
    Ferlian, Olga
    Zhou, Lingyan
    Meng, Jingjing
    Qi, Yuan
    Pei, Jianing
    He, Yanghui
    Liu, Ruiqiang
    Du, Zhenggang
    Long, Jilan
    Zhou, Xuhui
    Eisenhauer, Nico
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 863
  • [3] Impact of Elevated CO2 and Temperature on Growth, Development and Nutrient Uptake of Tomato
    Rangaswamy, Tejaswini C.
    Sridhara, Shankarappa
    Manoj, Konapura Nagaraja
    Gopakkali, Pradeep
    Ramesh, Nandini
    Shokralla, Shadi
    Zin El-Abedin, Tarek K.
    Almutairi, Khalid F.
    Elansary, Hosam O.
    HORTICULTURAE, 2021, 7 (11)
  • [4] Root system growth and development responses to elevated CO2: underlying signalling mechanisms and role in improving plant CO2 capture and soil C storage
    Bach, Lien
    Gojon, Alain
    BIOCHEMICAL JOURNAL, 2023, 480 (11) : 753 - 771
  • [5] Seventeen years of elevated CO2 exposure in a Chesapeake Bay Wetland:: sustained but contrasting responses of plant growth and CO2 uptake
    Rasse, DP
    Peresta, G
    Drake, BG
    GLOBAL CHANGE BIOLOGY, 2005, 11 (03) : 369 - 377
  • [6] Microbes modify soil nutrient availability and mediate plant responses to elevated CO2
    Pellitier, Peter T.
    Jackson, Robert B.
    PLANT AND SOIL, 2023, 483 (1-2) : 659 - 666
  • [7] Microbes modify soil nutrient availability and mediate plant responses to elevated CO2
    Peter T. Pellitier
    Robert B. Jackson
    Plant and Soil, 2023, 483 : 659 - 666
  • [8] Soil development under elevated CO2 affects plant growth responses to CO2 enrichment
    Edwards, GR
    Clark, H
    Newton, PCD
    BASIC AND APPLIED ECOLOGY, 2003, 4 (02) : 185 - 195
  • [9] Responses of root hair development to elevated CO2
    Niu, Yao Fang
    Jin, Gu Lei
    Chai, Ru Shan
    Wang, Huan
    Zhang, Yong Song
    PLANT SIGNALING & BEHAVIOR, 2011, 6 (09) : 1414 - 1417
  • [10] Effects of Elevated CO2 and Suboptimal Temperatures on Plant Development, Nutrient Uptake, and Insect Performance
    Pasian, Claudio C.
    HORTSCIENCE, 2010, 45 (08) : S300 - S301