An Introduction to Discrete Element Method: A Meso-scale Mechanism Analysis of Granular Flow

被引:4
作者
Huang, Yrjo Jun [1 ,2 ]
Nydal, Ole Jorgen [2 ]
Ge, Chenhui [1 ,3 ]
Yao, Baodian [4 ]
机构
[1] Fudan Univ, Dept Mech & Engn Sci, Shanghai 200082, Peoples R China
[2] Norwegian Univ Sci & Technol, Dept Energy & Proc Engn, N-7034 Trondheim, Norway
[3] Univ Florida, Dept Mech & Aerosp Engn, Gainesville, FL USA
[4] Shanghai Univ Engn Sci, Sch Mat Engn, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Discrete element method; meso-scale mechanism simulation; solid-fluid suspension flow; SIMULATION; COEFFICIENT; RESTITUTION; PARTICLES; DYNAMICS; BED;
D O I
10.1080/01932691.2014.984304
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The phenomenon of granular flows appears frequently in industrial and daily life. The particle-particle interaction plays an important role in granular flows, which makes the flows have some strong nonlinear characteristics and so different from the normal materials, either solids or liquids. Discrete element method (DEM) is a powerful tool to catch this interaction in meso-scopic scale. A brief review of DEM is presented, including some of our new works in this area. DEM can also be coupled with other CFD methods for simulations of solid-liquid suspension flow. An example of such coupling is presented in this article as well.
引用
收藏
页码:1370 / 1377
页数:8
相关论文
共 34 条
[1]  
Achenbach J. D., 1973, APPL MATH MECH, V16
[2]  
Allahdadi FA, 1993, TECHNICAL REPORT
[3]  
Atkinson K. E., 2008, An introduction to numerical analysis
[4]  
Babic M., 1988, DISCRETE PARTICLE NU
[5]   SOME MULTISTEP METHODS FOR USE IN MOLECULAR-DYNAMICS CALCULATIONS [J].
BEEMAN, D .
JOURNAL OF COMPUTATIONAL PHYSICS, 1976, 20 (02) :130-139
[6]  
Duran J., 2000, SANDS POWDERS GRAINS, V12
[7]   An approach to simulate the motion of spherical and non-spherical fuel particles in combustion chambers [J].
Dziugys, A ;
Peters, B .
GRANULAR MATTER, 2001, 3 (04) :231-265
[8]  
Evans Martha W., 1957, TECHNICAL REPORT
[9]  
Harlow F. H., 1964, Methods Comput. Phys, V3, P319
[10]  
Hertz H., 1881, J Die Reine Angew Math, V92, P156, DOI [10.1515/9783112342404-004, DOI 10.1515/CRLL.1882.92.156]