Convergence of the Weak Kahler-Ricci Flow on Manifolds of General Type

被引:2
|
作者
Tat Dat To [1 ,2 ]
机构
[1] Unversite Toulouse, Ecole Natl Aviat Civile, 7 Ave Edouard Belin, FR-31055 Toulouse, France
[2] Univ Toulouse, Inst Math Toulouse, CNRS, UPS, F-31062 Toulouse 09, France
关键词
VISCOSITY SOLUTIONS; DIRICHLET PROBLEM; EINSTEIN METRICS;
D O I
10.1093/imrn/rnz256
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Kahler-Ricci flow on compact Kahler manifolds whose canonical bundle is big. We show that the normalized Kahler-Ricci flow has long-time existence in the viscosity sense, is continuous in a Zariski open set, and converges to the unique singular Kahler-Einstein metric in the canonical class. The key ingredient is a viscosity theory for degenerate complex Monge-Ampere flows in big classes that we develop, extending and refining the approach of Eyssidieux-Guedj-Zeriahi.
引用
收藏
页码:6373 / 6404
页数:32
相关论文
共 50 条
  • [31] Stability of Kahler-Ricci Flow
    Chen, Xiuxiong
    Li, Haozhao
    JOURNAL OF GEOMETRIC ANALYSIS, 2010, 20 (02) : 306 - 334
  • [32] Notes on Kahler-Ricci Flow
    Tian, Gang
    RICCI FLOW AND GEOMETRIC APPLICATIONS, 2016, 2166 : 105 - 136
  • [33] BERGMAN ITERATION AND C∞-CONVERGENCE TOWARDS KAHLER-RICCI FLOW
    Takahashi, Ryosuke
    OSAKA JOURNAL OF MATHEMATICS, 2018, 55 (04) : 713 - 729
  • [34] Regularity of the Kahler-Ricci flow
    Tian, Gang
    Zhang, Zhenlei
    COMPTES RENDUS MATHEMATIQUE, 2013, 351 (15-16) : 635 - 638
  • [35] The twisted Kahler-Ricci flow
    Collins, Tristan C.
    Szekelyhidi, Gabor
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2016, 716 : 179 - 205
  • [36] A modified Kahler-Ricci flow
    Zhang, Zhou
    MATHEMATISCHE ANNALEN, 2009, 345 (03) : 559 - 579
  • [37] An Introduction to the Kahler-Ricci Flow
    Song, Jian
    Weinkove, Ben
    INTRODUCTION TO THE KAHLER-RICCI FLOW, 2013, 2086 : 89 - 188
  • [38] Monotonicity and Kahler-Ricci flow
    Ni, L
    GEOMETRIC EVOLUTION EQUATIONS, 2005, 367 : 149 - 165
  • [39] Hyperbolic Kahler-Ricci flow
    Xu Chao
    SCIENCE CHINA-MATHEMATICS, 2010, 53 (11) : 3027 - 3036
  • [40] Uniqueness and short time regularity of the weak Kahler-Ricci flow
    Di Nezza, Eleonora
    Lu, Chinh H.
    ADVANCES IN MATHEMATICS, 2017, 305 : 953 - 993