VISCOSITY SOLUTIONS;
DIRICHLET PROBLEM;
EINSTEIN METRICS;
D O I:
10.1093/imrn/rnz256
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We study the Kahler-Ricci flow on compact Kahler manifolds whose canonical bundle is big. We show that the normalized Kahler-Ricci flow has long-time existence in the viscosity sense, is continuous in a Zariski open set, and converges to the unique singular Kahler-Einstein metric in the canonical class. The key ingredient is a viscosity theory for degenerate complex Monge-Ampere flows in big classes that we develop, extending and refining the approach of Eyssidieux-Guedj-Zeriahi.
机构:
Beijing Normal Univ, Beijing, Peoples R China
Princeton Univ, Fine Hall,Washington Rd, Princeton, NJ 08544 USABeijing Normal Univ, Beijing, Peoples R China
机构:
Imperial Coll London, Dept Math, London SW7 2AZ, EnglandImperial Coll London, Dept Math, London SW7 2AZ, England
Di Nezza, Eleonora
Lu, Chinh H.
论文数: 0引用数: 0
h-index: 0
机构:
Chalmers, Math Sci, S-41296 Gothenburg, Sweden
Univ Paris 11, Fac Sci Orsay, Dept Math, Bur 144,Baiment 425, F-91405 Orsay, FranceImperial Coll London, Dept Math, London SW7 2AZ, England