Convergence of the Weak Kahler-Ricci Flow on Manifolds of General Type

被引:2
|
作者
Tat Dat To [1 ,2 ]
机构
[1] Unversite Toulouse, Ecole Natl Aviat Civile, 7 Ave Edouard Belin, FR-31055 Toulouse, France
[2] Univ Toulouse, Inst Math Toulouse, CNRS, UPS, F-31062 Toulouse 09, France
关键词
VISCOSITY SOLUTIONS; DIRICHLET PROBLEM; EINSTEIN METRICS;
D O I
10.1093/imrn/rnz256
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Kahler-Ricci flow on compact Kahler manifolds whose canonical bundle is big. We show that the normalized Kahler-Ricci flow has long-time existence in the viscosity sense, is continuous in a Zariski open set, and converges to the unique singular Kahler-Einstein metric in the canonical class. The key ingredient is a viscosity theory for degenerate complex Monge-Ampere flows in big classes that we develop, extending and refining the approach of Eyssidieux-Guedj-Zeriahi.
引用
收藏
页码:6373 / 6404
页数:32
相关论文
共 50 条