Symmetry and Its Role in Oscillation of Solutions of Third-Order Differential Equations

被引:4
|
作者
Kumar, M. Sathish [1 ]
Bazighifan, Omar [2 ,3 ]
Al-Shaqsi, Khalifa [4 ]
Wannalookkhee, Fongchan [5 ]
Nonlaopon, Kamsing [5 ]
机构
[1] Paavai Engn Coll Autonomous, Dept Math, Namakkal 637018, India
[2] Int Telemat Univ Uninettuno, Sect Math, Corso Vittorio Emanuele II,39, I-00186 Rome, Italy
[3] Hadhramout Univ, Dept Math, Fac Sci, Hadhramout 50512, Yemen
[4] Univ Technol & Appl Sci, Nizwa Coll Technol, Dept Informat Technol, PO Box 75, Kyoto 612, Japan
[5] Khon Kaen Univ, Dept Math, Fac Sci, Khon Kaen 40002, Thailand
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 08期
关键词
neutral differential equation; oscillation; Riccati substitution; deviating arguments; ASYMPTOTIC-BEHAVIOR;
D O I
10.3390/sym13081485
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Symmetry plays an essential role in determining the correct methods for the oscillatory properties of solutions to differential equations. This paper examines some new oscillation criteria for unbounded solutions of third-order neutral differential equations of the form (r(2)(zeta)((r(1)(zeta)(z '(zeta))(beta 1))')(beta 2))' + Sigma(n)(i=1)q(i)(zeta)chi(beta 3)(phi(i)(zeta))=0. New oscillation results are established by using generalized Riccati substitution, an integral average technique in the case of unbounded neutral coefficients. Examples are given to prove the significance of new theorems.
引用
收藏
页数:12
相关论文
共 50 条