Symmetry and Its Role in Oscillation of Solutions of Third-Order Differential Equations

被引:4
|
作者
Kumar, M. Sathish [1 ]
Bazighifan, Omar [2 ,3 ]
Al-Shaqsi, Khalifa [4 ]
Wannalookkhee, Fongchan [5 ]
Nonlaopon, Kamsing [5 ]
机构
[1] Paavai Engn Coll Autonomous, Dept Math, Namakkal 637018, India
[2] Int Telemat Univ Uninettuno, Sect Math, Corso Vittorio Emanuele II,39, I-00186 Rome, Italy
[3] Hadhramout Univ, Dept Math, Fac Sci, Hadhramout 50512, Yemen
[4] Univ Technol & Appl Sci, Nizwa Coll Technol, Dept Informat Technol, PO Box 75, Kyoto 612, Japan
[5] Khon Kaen Univ, Dept Math, Fac Sci, Khon Kaen 40002, Thailand
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 08期
关键词
neutral differential equation; oscillation; Riccati substitution; deviating arguments; ASYMPTOTIC-BEHAVIOR;
D O I
10.3390/sym13081485
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Symmetry plays an essential role in determining the correct methods for the oscillatory properties of solutions to differential equations. This paper examines some new oscillation criteria for unbounded solutions of third-order neutral differential equations of the form (r(2)(zeta)((r(1)(zeta)(z '(zeta))(beta 1))')(beta 2))' + Sigma(n)(i=1)q(i)(zeta)chi(beta 3)(phi(i)(zeta))=0. New oscillation results are established by using generalized Riccati substitution, an integral average technique in the case of unbounded neutral coefficients. Examples are given to prove the significance of new theorems.
引用
收藏
页数:12
相关论文
共 50 条
  • [11] OSCILLATION OF THIRD-ORDER NONLINEAR DELAY DIFFERENTIAL EQUATIONS
    Agarwal, Ravi P.
    Bohner, Martin
    Li, Tongxing
    Zhang, Chenghui
    TAIWANESE JOURNAL OF MATHEMATICS, 2013, 17 (02): : 545 - 558
  • [12] OSCILLATION OF THIRD-ORDER NEUTRAL DAMPED DIFFERENTIAL EQUATIONS
    Bartusek, Miroslav
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2021,
  • [13] Oscillation of Third-Order Nonlinear Neutral Differential Equations
    Liska, Petr
    DIFFERENTIAL AND DIFFERENCE EQUATIONS WITH APPLICATIONS, 2018, 230 : 233 - 245
  • [14] Oscillation and Asymptotic Properties of Differential Equations of Third-Order
    Elayaraja, R.
    Ganesan, V
    Bazighifan, Omar
    Cesarano, Clemente
    AXIOMS, 2021, 10 (03)
  • [15] Oscillation of Third-Order Differential Equations with Advanced Arguments
    Aldiaiji, Munirah
    Qaraad, Belgees
    Iambor, Loredana Florentina
    Rabie, Safi S.
    Elabbasy, Elmetwally M.
    MATHEMATICS, 2024, 12 (01)
  • [16] Oscillation of Third-Order Neutral Delay Differential Equations
    Li, Tongxing
    Zhang, Chenghui
    Xing, Guojing
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [17] Oscillation criteria for third-order nonlinear differential equations
    Baculikova, B.
    Elabbasy, E. M.
    Saker, S. H.
    Dzurina, J.
    MATHEMATICA SLOVACA, 2008, 58 (02) : 201 - 220
  • [18] Oscillation criteria for third-order delay differential equations
    Chatzarakis, George E.
    Grace, Said R.
    Jadlovska, Irena
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [19] Oscillation criteria for third-order delay differential equations
    George E Chatzarakis
    Said R Grace
    Irena Jadlovská
    Advances in Difference Equations, 2017
  • [20] Oscillation of Third-Order Differential Equations with Mixed Arguments
    Dzurina, Jozef
    Baculikova, Blanka
    DIFFERENTIAL AND DIFFERENCE EQUATIONS WITH APPLICATI ONS, 2013, 47 : 375 - 385