The outer stellar mass of massive galaxies: a simple tracer of halo mass with scatter comparable to richness and reduced projection effects

被引:12
作者
Huang, Song [1 ,2 ]
Leauthaud, Alexie [3 ]
Bradshaw, Christopher [3 ]
Hearin, Andrew [4 ]
Behroozi, Peter [5 ,6 ]
Lange, Johannes [3 ,7 ,8 ]
Greene, Jenny [2 ]
DeRose, Joseph [9 ]
Xhakaj, Enia [3 ]
Speagle, Joshua S. [10 ,11 ,12 ]
机构
[1] Tsinghua Univ, Dept Astron, Beijing 100084, Peoples R China
[2] Princeton Univ, Dept Astrophys Sci, Peyton Hall, Princeton, NJ 08540 USA
[3] Univ Calif Santa Cruz, Dept Astron & Astrophys, 1156 High St, Santa Cruz, CA 95064 USA
[4] Argonne Natl Lab, Argonne, IL 60439 USA
[5] Univ Arizona, Dept Astron, Tucson, AZ 85721 USA
[6] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA
[7] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA
[8] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[9] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 93720 USA
[10] Univ Toronto, Dept Stat Sci, Toronto, ON M5S 3G3, Canada
[11] Univ Toronto, David A Dunlap Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada
[12] Univ Toronto, Dunlap Inst Astron & Astrophys, Toronto, ON M5S 3H4, Canada
基金
美国国家科学基金会; 美国国家航空航天局; 日本学术振兴会; 日本科学技术振兴机构;
关键词
gravitational lensing: weak; galaxies: clusters: general; galaxies: haloes; galaxies: structure; cosmology: observations; HYPER-SUPRIME-CAM; DARK-MATTER HALOES; DIGITAL SKY SURVEY; INTRACLUSTER LIGHT; DATA RELEASE; SPLASHBACK RADIUS; ASSEMBLY BIAS; COSMOLOGICAL CONSTRAINTS; ENVIRONMENTAL DEPENDENCE; ILLUSTRISTNG SIMULATIONS;
D O I
10.1093/mnras/stac1680
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Using the weak gravitational lensing data from the Hyper Suprime-Cam Subaru Strategic Program (HSC survey), we study the potential of different stellar mass estimates in tracing halo mass. We consider galaxies with log(10)(M*/M-circle dot) > 11.5 at 0.2 < z < 0.5 with carefully measured light profiles, and clusters from the redMaPPer and CAMIRA richness-based algorithms. We devise a method (the 'Top-N test') to evaluate the scatter in the halo mass-observable relation for different tracers, and to inter-compare halo mass proxies in four number density bins using stacked galaxy-galaxy lensing profiles. This test reveals three key findings. Stellar masses based on CModel photometry and aperture luminosity within R <30 kpc are poor proxies of halo mass. In contrast, the stellar mass of the outer envelope is an excellent halo mass proxy. The stellar mass within R = [50, 100] kpc, M-*, ([50, 100]), has performance comparable to the state-of-the-art richness-based cluster finders at log(10)M(vir) greater than or similar to 14.0 and could be a better halo mass tracer at lower halo masses. Finally, using N-body simulations, we find that the lensing profiles of massive haloes selected by M-*,([50,100]) are consistent with the expectation for a sample without projection or mis-centring effects. Richness-selected clusters, on the other hand, display an excess at R similar to 1 Mpc in their lensing profiles, which may suggest a more significant impact from selection biases. These results suggest that X.-based tracers have distinct advantages in identifying massive haloes, which could open up new avenues for cluster cosmology. The codes and data used in this work can be found here:
引用
收藏
页码:4722 / 4752
页数:31
相关论文
共 197 条
  • [1] Abazajian K., 2004, ASTRON J, V128, P502, DOI [DOI 10.1086/421365, 10.1086/421365]
  • [2] Abazajian K. N., 2009, ASTROPHYS J SUPPL S, V182, P543, DOI [DOI 10.1088/0067-0049/182/2/543, 10.1088/0067-0049/182/2/543]
  • [3] The Dark Energy Survey: more than dark energy - an overview
    Abbott, T.
    Abdalla, F. B.
    Aleksic, J.
    Allam, S.
    Amara, A.
    Bacon, D.
    Balbinot, E.
    Banerji, M.
    Bechtol, K.
    Benoit-Levy, A.
    Bernstein, G. M.
    Bertin, E.
    Blazek, J.
    Bonnett, C.
    Bridle, S.
    Brooks, D.
    Brunner, R. J.
    Buckley-Geer, E.
    Burke, D. L.
    Caminha, G. B.
    Capozzi, D.
    Carlsen, J.
    Carnero-Rosell, A.
    Carollo, M.
    Carrasco-Kind, M.
    Carretero, J.
    Castander, F. J.
    Clerkin, L.
    Collett, T.
    Conselice, C.
    Crocce, M.
    Cunha, C. E.
    D'Andrea, C. B.
    da Costa, L. N.
    Davis, T. M.
    Desai, S.
    Diehl, H. T.
    Dietrich, J. P.
    Dodelson, S.
    Doel, P.
    Drlica-Wagner, A.
    Estrada, J.
    Etherington, J.
    Evrard, A. E.
    Fabbri, J.
    Finley, D. A.
    Flaugher, B.
    Foley, R. J.
    Fosalba, P.
    Frieman, J.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 460 (02) : 1270 - 1299
  • [4] Abbott T.M.C, 2020, PHYS REV D, V102, DOI DOI 10.1103/PHYSREVD.102.023509
  • [5] Abbott T.M.C., 2018, ASTROPHYS J SUPPL S, V239, P18, DOI DOI 10.3847/1538-4365/AAE9F0
  • [6] Abbott T. M. C., 2021, ASTROPHYS J SUPPL S, V255, P20, DOI [10.3847/1538-4365/ac00b3, DOI 10.3847/1538-4365/AC00B3]
  • [7] Abbott T. M. C., 2021, ARXIV210513549
  • [8] Aghamousa A., 2016, ARXIV, DOI DOI 10.48550/ARXIV.1611.00036
  • [9] Aihara H., 2018, PASJ, V70, pS4, DOI [DOI 10.1093/PASJ/PSX081, 10.1093/pasj/psx066, DOI 10.1093/PASJ/PSX066]
  • [10] Aihara H., 2018, PASJ, V70, pS8, DOI DOI 10.1093/PASJ/PSX081