Quantum information in cavity quantum electrodynamics: logical gates, entanglement engineering and 'Schrodinger-cat states'

被引:29
作者
Haroche, S
机构
[1] Ecole Normale Super, Dept Phys, F-75231 Paris 05, France
[2] Coll France, F-75005 Paris, France
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2003年 / 361卷 / 1808期
关键词
quantum information; mesoscopic superpositions; decoherence; entanglement; complementarity;
D O I
10.1098/rsta.2003.1204
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In cavity-quantum-electrodynamics experiments, two-level Rydberg atoms and single-photon microwave fields can be seen as qubits. Quantum gates based on resonant and dispersive atom-field effects have been realized., which implement various kinds of conditional dynamics between these qubits. We have also studied the interaction between a single atom and coherent fields stored in the cavity. By progressively increasing the number of photons in these fields, we have explored various aspects of the quantum-classical boundary. We have realized a complementarity experiment demonstrating the continuous evolution of an apparatus from a quantum to a classical behaviour. We have also prepared 'Schrodinger-cat'-like states of the field made of a, few photons, and observed their decoherence. We present a brief review of these experiments along with a proposal to study larger systems, i.e. coherent fields with more photons. Fundamental limits to the size of mesoscopic superpositions of field states in a cavity will be briefly discussed.
引用
收藏
页码:1339 / 1347
页数:9
相关论文
共 24 条
[1]   Wave-particle duality of C60 molecules [J].
Arndt, M ;
Nairz, O ;
Vos-Andreae, J ;
Keller, C ;
van der Zouw, G ;
Zeilinger, A .
NATURE, 1999, 401 (6754) :680-682
[2]   A complementarity experiment with an interferometer at the quantum-classical boundary [J].
Bertet, P ;
Osnaghi, S ;
Rauschenbeutel, A ;
Nogues, G ;
Auffeves, A ;
Brune, M ;
Raimond, JM ;
Haroche, S .
NATURE, 2001, 411 (6834) :166-170
[3]  
BOUWEMEESTER D, 2000, PHYSICS QUANTUM INFO
[4]   Observing the progressive decoherence of the ''meter'' in a quantum measurement [J].
Brune, M ;
Hagley, E ;
Dreyer, J ;
Maitre, X ;
Maali, A ;
Wunderlich, C ;
Raimond, JM ;
Haroche, S .
PHYSICAL REVIEW LETTERS, 1996, 77 (24) :4887-4890
[5]   FROM LAMB SHIFT TO LIGHT SHIFTS - VACUUM AND SUBPHOTON CAVITY FIELDS MEASURED BY ATOMIC PHASE-SENSITIVE DETECTION [J].
BRUNE, M ;
NUSSENZVEIG, P ;
SCHMIDT-KALER, F ;
BERNARDOT, F ;
MAALI, A ;
RAIMOND, JM ;
HAROCHE, S .
PHYSICAL REVIEW LETTERS, 1994, 72 (21) :3339-3342
[6]   Quantum superposition states of Bose-Einstein condensates [J].
Cirac, JI ;
Lewenstein, M ;
Molmer, K ;
Zoller, P .
PHYSICAL REVIEW A, 1998, 57 (02) :1208-1218
[7]   Decoherence in Bose-Einstein condensates: Towards bigger and better Schrodinger cats [J].
Dalvit, DAR ;
Dziarmaga, J ;
Zurek, WH .
PHYSICAL REVIEW A, 2000, 62 (01) :10
[8]   Mesoscopic quantum coherences in cavity QED: Preparation and decoherence monitoring schemes [J].
Davidovich, L ;
Brune, M ;
Raimond, JM ;
Haroche, S .
PHYSICAL REVIEW A, 1996, 53 (03) :1295-1309
[9]   QUANTUM SWITCHES AND NONLOCAL MICROWAVE FIELDS [J].
DAVIDOVICH, L ;
MAALI, A ;
BRUNE, M ;
RAIMOND, JM ;
HAROCHE, S .
PHYSICAL REVIEW LETTERS, 1993, 71 (15) :2360-2363
[10]   Autofeedback scheme for preservation of macroscopic coherence in microwave cavities [J].
Fortunato, M ;
Raimond, JM ;
Tombesi, P ;
Vitali, D .
PHYSICAL REVIEW A, 1999, 60 (02) :1687-1697