A CNN-Transformer Network With Multiscale Context Aggregation for Fine-Grained Cropland Change Detection

被引:226
作者
Liu, Mengxi [1 ]
Chai, Zhuoqun [1 ]
Deng, Haojun [1 ]
Liu, Rong [1 ]
机构
[1] Sun Yat Sen Univ, Sch Geog & Planning, Guangdong Prov Key Lab Urbanizat & Geosimulat, Guangzhou 510275, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Transformers; Head; Data mining; Task analysis; Decoding; Biological system modeling; Change detection (CD); cropland; deep learning (DL); remote sensing; transformer; URBAN CHANGES; LAND-COVER;
D O I
10.1109/JSTARS.2022.3177235
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Nonagriculturalization incidents are serious threats to local agricultural ecosystem and global food security. Remote sensing change detection (CD) can provide an effective approach for in-time detection and prevention of such incidents. However, existing CD methods are difficult to deal with the large intraclass differences of cropland changes in high-resolution images. In addition, traditional CNN based models are plagued by the loss of long-range context information, and the high computational complexity brought by deep layers. Therefore, in this article, we propose a CNN-transformer network with multiscale context aggregation (MSCANet), which combines the merits of CNN and transformer to fulfill efficient and effective cropland CD. In the MSCANet, a CNN-based feature extractor is first utilized to capture hierarchical features, then a transformer-based MSCA is designed to encode and aggregate context information. Finally, a multibranch prediction head with three CNN classifiers is applied to obtain change maps, to enhance the supervision for deep layers. Besides, for the lack of CD dataset with fine-grained cropland change of interest, we also provide a new cropland change detection dataset, which contains 600 pairs of 512 x 512 bi-temporal images with the spatial resolution of 0.5-2m. Comparative experiments with several CD models prove the effectiveness of the MSCANet, with the highest F1 of 64.67% on the high-resolution semantic CD dataset, and of 71.29% on CLCD.
引用
收藏
页码:4297 / 4306
页数:10
相关论文
共 50 条
[11]   Tracking disturbance-regrowth dynamics in tropical forests using structural change detection and Landsat time series [J].
DeVries, Ben ;
Decuyper, Mathieu ;
Verbesselt, Jan ;
Zeileis, Achim ;
Herold, Martin ;
Joseph, Shijo .
REMOTE SENSING OF ENVIRONMENT, 2015, 169 :320-334
[12]   Monitoring urban changes based on scale-space filtering and object-oriented classification [J].
Doxani, G. ;
Karantzalos, K. ;
Tsakiri-Strati, M. .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2012, 15 :38-48
[13]   Toward mapping crop progress at field scales through fusion of Landsat and MODIS imagery [J].
Gao, Feng ;
Anderson, Martha C. ;
Zhang, Xiaoyang ;
Yang, Zhengwei ;
Alfieri, Joseph G. ;
Kustas, William P. ;
Mueller, Rick ;
Johnson, David M. ;
Prueger, John H. .
REMOTE SENSING OF ENVIRONMENT, 2017, 188 :9-25
[14]   Sustainable Intensification in Agriculture: Premises and Policies [J].
Garnett, T. ;
Appleby, M. C. ;
Balmford, A. ;
Bateman, I. J. ;
Benton, T. G. ;
Bloomer, P. ;
Burlingame, B. ;
Dawkins, M. ;
Dolan, L. ;
Fraser, D. ;
Herrero, M. ;
Hoffmann, I. ;
Smith, P. ;
Thornton, P. K. ;
Toulmin, C. ;
Vermeulen, S. J. ;
Godfray, H. C. J. .
SCIENCE, 2013, 341 (6141) :33-34
[15]  
Glorot X., 2011, P 14 INT C ART INT S, V15, P315, DOI DOI 10.1177/1753193410395357
[16]   Food Security: The Challenge of Feeding 9 Billion People [J].
Godfray, H. Charles J. ;
Beddington, John R. ;
Crute, Ian R. ;
Haddad, Lawrence ;
Lawrence, David ;
Muir, James F. ;
Pretty, Jules ;
Robinson, Sherman ;
Thomas, Sandy M. ;
Toulmin, Camilla .
SCIENCE, 2010, 327 (5967) :812-818
[17]   A Transformer-Based Network for Anisotropic 3D Medical Image Segmentation [J].
Guo, Danfeng ;
Terzopoulos, Demetri .
2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, :8857-8861
[18]   Support Vector Reduction in SVM Algorithm for Abrupt Change Detection in Remote Sensing [J].
Habib, Tarek ;
Inglada, Jordi ;
Mercier, Gregoire ;
Chanussot, Jocelyn .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2009, 6 (03) :606-610
[19]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[20]  
Hendrycks Dan, 2016, Bridging nonlinearities and stochastic regularizers with Gaussian error linear units