A stochastic model of voice generation and the corresponding solution for the inverse problem using Artificial Neural Network for case with pathology in the vocal folds
被引:3
作者:
Cataldo, E.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Fluminense, Grad Program Elect & Telecommun Engn, Rua Mario Santos Braga S-N, BR-24020140 Niteroi, RJ, BrazilUniv Fed Fluminense, Grad Program Elect & Telecommun Engn, Rua Mario Santos Braga S-N, BR-24020140 Niteroi, RJ, Brazil
Cataldo, E.
[1
]
Soize, C.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Gustave Eiffel, Lab Modelisat & Simulat Multi Echelle, MSME UMR 8208, CNRS, 5 Bd Descartes, F-77454 Marne La Vallee, FranceUniv Fed Fluminense, Grad Program Elect & Telecommun Engn, Rua Mario Santos Braga S-N, BR-24020140 Niteroi, RJ, Brazil
Soize, C.
[2
]
机构:
[1] Univ Fed Fluminense, Grad Program Elect & Telecommun Engn, Rua Mario Santos Braga S-N, BR-24020140 Niteroi, RJ, Brazil
[2] Univ Gustave Eiffel, Lab Modelisat & Simulat Multi Echelle, MSME UMR 8208, CNRS, 5 Bd Descartes, F-77454 Marne La Vallee, France
A novel stochastic model to produce voiced sounds is proposed and, mainly, the corresponding identification of some model parameters using an Artificial Neural Network (ANN). The procedure described in this paper is about an intermediate step, which has as final objective to identify pathologies in the vocal folds through the voice of patients, that is, through a non-invasive method. The proposed model presented here uses the source-filter Fant theory and three main novelties are presented: a new mathematical model to produce voice obtained from the unification of two other deterministic one mass-spring-damper models obtained from the literature; a stochastic model that can generate and control the level of jitter resulting even in hoarse voice signals and/or with pathological characteristics but using a simpler model than those usually discussed in the literature; and the most important novelty, the identification of parameters of the proposed model, from experimental voice signals, using an ANN, particularly in a pathological case. The proposed neural network-based identification method requires a construction of a database from which an ANN can be trained to learn the nonlinear relationship between the parameters of the stochastic model and some relevant quantities of interest. The corresponding inverse stochastic problem is then solved in two cases: for one utterance corresponding to a normal voice and for another utterance corresponding to a pathological case corresponding to a nodulus in the vocal folds, helping to validate the model.
引用
收藏
页数:8
相关论文
共 24 条
[1]
[Anonymous], 1997, Applied Smoothing Techniques for Data Analysis: The Kernel Approach with S-Plus Illustrations
机构:
Univ Fed Fluminense, Telecommun Engn Dept, Grad Program Elect & Telecommun Engn, Rua Mario Santos Braga S-N, BR-24020140 Niteroi, RJ, BrazilUniv Fed Fluminense, Telecommun Engn Dept, Grad Program Elect & Telecommun Engn, Rua Mario Santos Braga S-N, BR-24020140 Niteroi, RJ, Brazil
Cataldo, E.
Soize, C.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Est, Lab Modelisat & Simulat Multi Echelle, MSME UMR CNRS 8208, 5 Bd Descartes, F-77454 Marne La Vallee, FranceUniv Fed Fluminense, Telecommun Engn Dept, Grad Program Elect & Telecommun Engn, Rua Mario Santos Braga S-N, BR-24020140 Niteroi, RJ, Brazil
机构:
Univ Florence, Dept Elect & Telecommun, Via S Marta 3, I-50139 Florence, ItalyUniv Florence, Dept Elect & Telecommun, Via S Marta 3, I-50139 Florence, Italy
Manfredi, Claudia
Bocchi, Leonardo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Florence, Dept Elect & Telecommun, Via S Marta 3, I-50139 Florence, ItalyUniv Florence, Dept Elect & Telecommun, Via S Marta 3, I-50139 Florence, Italy
Bocchi, Leonardo
Cantarella, Giovanna
论文数: 0引用数: 0
h-index: 0
机构:
Univ Milan, Dept Otolaryngol, Osped Maggiore, IRCCS, I-20122 Milan, ItalyUniv Florence, Dept Elect & Telecommun, Via S Marta 3, I-50139 Florence, Italy
机构:
Univ Fed Fluminense, Telecommun Engn Dept, Grad Program Elect & Telecommun Engn, Rua Mario Santos Braga S-N, BR-24020140 Niteroi, RJ, BrazilUniv Fed Fluminense, Telecommun Engn Dept, Grad Program Elect & Telecommun Engn, Rua Mario Santos Braga S-N, BR-24020140 Niteroi, RJ, Brazil
Cataldo, E.
Soize, C.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Est, Lab Modelisat & Simulat Multi Echelle, MSME UMR CNRS 8208, 5 Bd Descartes, F-77454 Marne La Vallee, FranceUniv Fed Fluminense, Telecommun Engn Dept, Grad Program Elect & Telecommun Engn, Rua Mario Santos Braga S-N, BR-24020140 Niteroi, RJ, Brazil
机构:
Univ Florence, Dept Elect & Telecommun, Via S Marta 3, I-50139 Florence, ItalyUniv Florence, Dept Elect & Telecommun, Via S Marta 3, I-50139 Florence, Italy
Manfredi, Claudia
Bocchi, Leonardo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Florence, Dept Elect & Telecommun, Via S Marta 3, I-50139 Florence, ItalyUniv Florence, Dept Elect & Telecommun, Via S Marta 3, I-50139 Florence, Italy
Bocchi, Leonardo
Cantarella, Giovanna
论文数: 0引用数: 0
h-index: 0
机构:
Univ Milan, Dept Otolaryngol, Osped Maggiore, IRCCS, I-20122 Milan, ItalyUniv Florence, Dept Elect & Telecommun, Via S Marta 3, I-50139 Florence, Italy