Generalized controlled invariance for discrete-time nonlinear systems with an application to the dynamic disturbance decoupling problem

被引:8
作者
Aranda-Bricaire, E [1 ]
Kotta, Ü
机构
[1] IPN, CINVESTAV, Dept Ingn Elect, Secc Mecatron, Mexico City 07300, DF, Mexico
[2] Tallinn Univ Technol, Inst Cybernet, EE-12618 Tallinn, Estonia
关键词
controlled invariance; differential forms; disturbance decoupling; dynamic state feedback;
D O I
10.1109/9.898712
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In analogy with the continuous-time case, a general notion of controlled invariance with respect to quasi-static-state feedback is introduced for discrete-time nonlinear systems which incorporates the earlier definition of controlled invariance with respect to regular static-state feedback. This new notion is used to derive a geometric solution to the dynamic disturbance decoupling problem, The proposed solution is a natural generalization of the geometric solution to the static disturbance decoupling problem.
引用
收藏
页码:165 / 171
页数:7
相关论文
共 19 条
[1]   Linearization of discrete-time systems [J].
ArandaBricaire, E ;
Kotta, U ;
Moog, CH .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1996, 34 (06) :1999-2023
[2]  
ARANDABRICAIRE E, 1995, P IFAC C SYST STRUCT, P155
[3]   INTERNALLY EXPONENTIALLY STABLE NONLINEAR DISCRETE-TIME NONINTERACTING CONTROL VIA STATIC FEEDBACK [J].
CHUNG, ST ;
GRIZZLE, JW .
INTERNATIONAL JOURNAL OF CONTROL, 1992, 55 (05) :1071-1092
[4]  
DELALEAU E, 1992, CR ACAD SCI I-MATH, V315, P101
[5]  
DELALEAU E, 1993, NONLINEAR CONTROL SY, P489
[6]  
FLIEGNER T, 1994, P 33 IEEE C DEC CONT, V2, P1790
[7]   DISCRETE-TIME-SYSTEMS AND DIFFERENCE ALGEBRA [J].
FLIESS, M .
FORUM MATHEMATICUM, 1990, 2 (03) :213-232
[9]   A LINEAR ALGEBRAIC FRAMEWORK FOR THE ANALYSIS OF DISCRETE-TIME NONLINEAR-SYSTEMS [J].
GRIZZLE, JW .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1993, 31 (04) :1026-1044
[10]   LOCAL INPUT OUTPUT DECOUPLING OF DISCRETE-TIME NONLINEAR-SYSTEMS [J].
GRIZZLE, JW .
INTERNATIONAL JOURNAL OF CONTROL, 1986, 43 (05) :1517-1530