Enhanced dechlorination of chlorinated methanes and ethenes by chloride green rust in the presence of copper(II)

被引:79
作者
Maithreepala, RA [1 ]
Doong, RA [1 ]
机构
[1] Natl Tsing Hua Univ, Dept Atom Sci, Hsinchu 30013, Taiwan
关键词
D O I
10.1021/es048428b
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The enhanced removal of carbon tetrachloride (CCl4), tetrachloroethene (C2Cl4), and trichloroethene (C2HCl3) by chloride green rust (GR(Cl)) in the presence of copper ions was investigated. X-ray powder diffraction (XRPD) and X-ray photoelectron spectroscopy (XPS) were used to characterize the crystallization and chemical speciation, respectively, of the secondary mineral phases produced in the GR(Cl)-Cu(II) system. The addition of Cu(II) to GR(Cl) suspensions resulted in enhanced dechlorination of the chlorinated hydrocarbons examined in this study. The degradation reactions followed pseudo-first-order kinetics and the pseudo-first-order rate constant (k(obs)) for CCl4 (20 mu M) removal by GR(Cl) at pH 7.2 was 0.0808 h(-1). Addition of 0.5 mM Cu(II) completely dechlorinated CCl4 within 35 min, and the kobs was 84 times greater than that in the absence of Cu(II). Chloroform (CHCl3), the major chlorinated product in CCl4 dechlorination, accumulated at a concentration up to 13 mu M in the GR(Cl) system alone, but was completely dechlorinated within 9 h in the GR(Cl)-Cu(II) suspension. Also, rapid removal of C2Cl4 and C2HCl3 by GR(CI) was observed when COO was added. The k(obs) values for the removal of chlorinated ethenes were 4.7-7 times higher than that obtained in the absence of Cu(II). In addition, the k(obs) for PCE removal increased linearly with respect to Cu(II) concentrations in the range from 0.1 to 1.0 mM. Addition of Cu(II) at a concentration higher than 1.0 mM decreased the k(obs) for the removal of both C2Cl4 and C2HCl3 due to the decrease in structural Fe(II) concentration in GR(CI) and the changes in redox potentials and pH values. Moreover, the highest removal efficiency and rate Of C2Cl4 was obtained at near-neutral pH when Cu(II) was added into the GR(CI) suspension. XPS and XRPD results showed that the Fe(II) in the GRP) suspension could reduce Cu(II) to both Cu(I) and metallic Cu. These findings are relevant to the better understanding of the role of abiotic removal of chlorinated hydrocarbons during remediation and/or natural attenuation in iron-reducing environments.
引用
收藏
页码:4082 / 4090
页数:9
相关论文
共 45 条
[1]   Evidence for the Fe(II)-Fe(III) Green Rust "Fougerite" mineral occurrence in a hydromorphic soil and its transformation with depth. [J].
Abdelmoula, M ;
Trolard, F ;
Bourrie, G ;
Genin, JMR .
HYPERFINE INTERACTIONS, 1998, 112 (1-4) :235-238
[2]   Effect of orthophosphate on the oxidation products of Fe(II)-Fe(III) hydroxycarbonate:: The transformation of green rust to ferrihydrite [J].
Benali, O ;
Abdelmoula, M ;
Refait, P ;
Génin, JMR .
GEOCHIMICA ET COSMOCHIMICA ACTA, 2001, 65 (11) :1715-1726
[3]  
BRINDLEY GW, 1976, NATURE, V263, P353, DOI 10.1038/263353a0
[4]   Biogenic magnetite formation through anaerobic biooxidation of Fe(II) [J].
Chaudhuri, SK ;
Lack, JG ;
Coates, JD .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2001, 67 (06) :2844-2848
[5]  
DIEHL H, 1972, COOPER REAGENTS CUPR
[6]   Reductive dechlorination of carbon tetrachloride and tetrachloroethylene by zerovalent silicon-iron reductants [J].
Doong, RA ;
Chen, KT ;
Tsai, HC .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2003, 37 (11) :2575-2581
[7]   Cysteine-mediated reductive dissolution of poorly crystalline iron(III) oxides by Geobacter sulfurreducens [J].
Doong, RA ;
Schink, B .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2002, 36 (13) :2939-2945
[8]   Reactivity of Fe(II)-bearing minerals toward reductive transformation of organic contaminants [J].
Elsner, M ;
Schwarzenbach, RP ;
Haderlein, SB .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2004, 38 (03) :799-807
[9]   Reductive dechlorination of carbon tetrachloride using iron(II) iron(III) hydroxide sulfate (green rust) [J].
Erbs, M ;
Hansen, HCB ;
Olsen, CE .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1999, 33 (02) :307-311
[10]   Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium [J].
Fredrickson, JK ;
Zachara, JM ;
Kennedy, DW ;
Dong, HL ;
Onstott, TC ;
Hinman, NW ;
Li, SM .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1998, 62 (19-20) :3239-3257