Anomalous matrix and interlayer pore structure of 3D-printed fiber-reinforced cementitious composites

被引:33
|
作者
Yang, Rijiao [1 ,2 ]
Zeng, Qiang [1 ]
Peng, Yu [1 ]
Wang, Hailong [1 ]
Wang, Zhendi [2 ]
机构
[1] Zhejiang Univ, Coll Civil Engn & Architecture, Hangzhou 310058, Peoples R China
[2] China Bldg Mat Acad, State Key Lab Green Bldg Mat, Beijing 100024, Peoples R China
基金
中国国家自然科学基金;
关键词
3D-printed cementitious composites; Pore structure; Interlayer; Matrix; Mechanical property; MICROSTRUCTURAL ANALYSIS; MECHANICAL PERFORMANCE; HARDENED PROPERTIES; GLASS-FIBER; CONCRETE; EXTRUSION; FRESH;
D O I
10.1016/j.cemconres.2022.106829
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Ordinary 3D-printed neat cement paste generally possesses a porous interface between two neighbored filaments. Our work demonstrates that the addition of glass microfibers into cementitious slurries may lead to an anomalous pore structure, i.e., the increased porosity of the inner and outer matrices in filaments and the densified interlayer between filaments in fiber-reinforced cementitious composites (FRCC). Limited glass microfiber addition (0.6%) has no benefits to the bending strength of FRCC beams, the compressive strength of filament matrix, and the bonding behaviors between filaments. The coupled mechanisms of lubrication layer and pressurized bleeding on the surface of filaments, and air-void entrapments in the matrix of filaments were proposed to account for the formation of the anomalous pore structure and strengths. Our findings would deepen the understanding of matrix-interlayer structures in 3D-printed FRCC towards better tuning and design of 3D printing-based additive manufacturing.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Interlayer bonding strength and pore characteristics of 3D printed engineered cementitious composites (ECC)
    Xiao, Jianzhuang
    Bai, Meiyan
    Wu, Yuching
    Duan, Zhenhua
    Qin, Jifeng
    JOURNAL OF BUILDING ENGINEERING, 2024, 84
  • [22] Continuous Fiber-Reinforced Aramid/PETG 3D-Printed Composites with High Fiber Loading through Fused Filament Fabrication
    Rijckaert, Sander
    Daelemans, Lode
    Cardon, Ludwig
    Boone, Matthieu
    Van Paepegem, Wim
    De Clerck, Karen
    POLYMERS, 2022, 14 (02)
  • [23] Effect of Raster Orientation and Fiber Volume Fraction on 3D-Printed Continuous Basalt Fiber-Reinforced Polylactic Acid Composites
    Malik, Mayand
    Ruan, Dong
    Saxena, Prateek
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2025,
  • [24] 3D-Printed Wood-Fiber Reinforced Architected Cellular Composites
    Estakhrianhaghighi, Ehsan
    Mirabolghasemi, Armin
    Zhang, Yingnan
    Lessard, Larry
    Akbarzadeh, Abdolhamid
    ADVANCED ENGINEERING MATERIALS, 2020, 22 (11)
  • [25] 3D-Printed Carbon Fiber Reinforced Polymer Composites: A Systematic Review
    Sanei, Seyed Hamid Reza
    Popescu, Diana
    JOURNAL OF COMPOSITES SCIENCE, 2020, 4 (03):
  • [26] Fracture studies of 3D-printed continuous glass fiber reinforced composites
    Frohn-Soerensen, Peter
    Reuter, Jonas
    Engel, Bernd
    Reinicke, Tamara
    Khosravani, Mohammad Reza
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2022, 119
  • [27] Stiffness prediction of 3D printed fiber-reinforced thermoplastic composites
    Choi, Jin Young
    Kortschot, Mark Timothy
    RAPID PROTOTYPING JOURNAL, 2020, 26 (03) : 549 - 555
  • [28] FIBER-REINFORCED MATRIX COMPOSITES
    ROHLFING, RA
    RUBBER AGE, 1975, 107 (09): : 35 - 37
  • [29] Interlayer Adhesion Analysis of 3D-Printed Continuous Carbon Fibre-Reinforced Composites
    Kuncius, Tomas
    Rimasauskas, Marius
    Rimasauskiene, Ruta
    POLYMERS, 2021, 13 (10)
  • [30] Materials, Performance Studies, and Application Progress of Fiber-Reinforced 3D-Printed Concrete
    Yang, Jie
    Xu, Ke
    He, Haijie
    JOURNAL OF TESTING AND EVALUATION, 2025,