共 50 条
Ume1p represses meiotic gene transcription in Saccharomyces cerevisiae through interaction with the histone deacetylase Rpd3p
被引:22
|作者:
Mallory, MJ
[1
]
Strich, R
[1
]
机构:
[1] Fox Chase Canc Ctr, Inst Canc Res, Philadelphia, PA 19111 USA
关键词:
D O I:
10.1074/jbc.M308632200
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
Ume1p is a member of a conserved protein family including RbAp48 that associates with histone deacetylases. Consistent with this finding, Ume1p is required for the full repression of a subset of meiotic genes during vegetative growth in budding yeast. In addition to mitotic cell division, this report describes a new role for Ume1p in meiotic gene repression in precommitment sporulating cultures returning to vegetative growth. However, Ume1p is not required to re-establish repression as part of the meiotic transient transcription program. Mutational analysis revealed that two conserved domains (NEE box and a WD repeat motif) are required for Ume1p-dependent repression. Co-immunoprecipitation studies revealed that both the NEE box and the WD repeat motif are essential for normal Rpd3p binding. Finally, Ume1p-Rpd3p association is dependent on the global co-repressor Sin3p. Moreover, this activity was localized to one of the four paired amphipathic-helix domains of Sin3p shown previously to be required for transcriptional repression. These findings support a model that Ume1p binding to Rpd3p is required for its repression activity. In addition, these results suggest that Rpd3-Ume1p-Sin3p comprises an interdependent complex required for mediating transcriptional repression.
引用
收藏
页码:44727 / 44734
页数:8
相关论文