Polyhedral approximations of strictly convex compacta

被引:4
作者
Balashov, Maxim V. [3 ]
Repovs, Dusan [1 ,2 ]
机构
[1] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia
[2] Univ Ljubljana, Fac Educ, Ljubljana 1000, Slovenia
[3] Moscow Inst Phys & Technol, Dept Higher Math, Dolgoprudnyi 141700, Moscow Region, Russia
关键词
Modulus of convexity; Set-valued mapping; Strict convexity; Uniform convexity; Supporting function; Grid; Approximation; SPLITTING PROBLEM; SELECTIONS;
D O I
10.1016/j.jmaa.2010.09.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider polyhedral approximations of strictly convex compacta in finite-dimensional Euclidean spaces (such compacta are also uniformly convex). We obtain the best possible estimates for errors of considered approximations in the Hausdorff metric. We also obtain new estimates of an approximate algorithm for finding the convex hulls. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:529 / 537
页数:9
相关论文
共 13 条
[1]  
[Anonymous], 1966, Sov. Math. Dokl
[2]  
Aubin J.P., 1994, Differential Inclusions
[3]   Weakly convex sets and modulus of nonconvexity [J].
Balashov, Maxim V. ;
Repovs, Dusan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 371 (01) :113-127
[4]   Uniform convexity and the splitting problem for selections [J].
Balashov, Maxim V. ;
Repovs, Dusan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 360 (01) :307-316
[5]   On the splitting problem for selections [J].
Balashov, Maxim V. ;
Repovs, Dusan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 355 (01) :277-287
[6]  
DIJKSTRA EW, 1976, PRENTICEHALL SERIES
[7]  
LINDENSTRAUSS J, 1979, GEOMETRY BANACH SPAC
[8]  
ORLOVA GB, 1997, COMPUT MATH CYBERNET, V2, P32
[9]  
Polovinkin E. S., 2007, Elements of Convex and Strongly Convex Analysis
[10]   An algorithm for the numerical solution of linear differential games [J].
Polovinkin, ES ;
Ivanov, GE ;
Balashov, MV ;
Konstantinov, RV ;
Khorev, AV .
SBORNIK MATHEMATICS, 2001, 192 (9-10) :1515-1542