Electrons in a shell and the virial theorem

被引:0
|
作者
Sañudo, J
Pacheco, AF [1 ]
机构
[1] Univ Zaragoza, Fac Ciencias, E-50009 Zaragoza, Spain
[2] Univ Zaragoza, BIFI, E-50009 Zaragoza, Spain
[3] Univ Extremadura, Dept Fis, E-06071 Badajoz, Spain
关键词
Thomas-Fermi model; virial theorem;
D O I
10.1016/S0378-4371(03)00613-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The density distribution of N electrons placed inside an empty spherical impenetrable shell constitutes an interesting application of the Thomas-Fermi (TF) model with great academic potential. For large N, this solution is amenable to a perturbative analytic expansion. Here, we prove the virial theorem (VT) for the TF solution of spherically symmetric electron distributions. Then, we find out that the fulfilment of the VT in the specific case of the electrons in a shell, is implemented order by order throughout the perturbative series. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:439 / 448
页数:10
相关论文
共 50 条
  • [31] The virial theorem and the ground state problem in polaron theory
    N. I. Kashirina
    V. D. Lakhno
    A. V. Tulub
    Journal of Experimental and Theoretical Physics, 2012, 114 : 867 - 869
  • [32] Pohozaev identity and Virial Theorem for the Dirac–Coulomb operator
    Vittorio Coti Zelati
    Margherita Nolasco
    Journal of Fixed Point Theory and Applications, 2017, 19 : 601 - 615
  • [33] Quantum Mechanical Virial Theorem in Systems with Translational and Rotational Symmetry
    Domagoj Kuić
    International Journal of Theoretical Physics, 2013, 52 : 1221 - 1239
  • [34] Structural Limitations of Energy Storage Systems Based on the Virial Theorem
    Nomura, Shinichi
    Tsutsui, Hiroaki
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2017, 27 (04)
  • [35] Virial Theorem, Dark Matter, and N-Body Problems
    Saari, Donald G.
    EXPLORING THE SOLAR SYSTEM AND THE UNIVERSE, 2008, 1043 : 93 - 100
  • [36] Virial theorem in quasi-coordinates and Lie algebroid formalism
    Carinena, Jose F.
    Gheorghiu, Irina
    Martinez, Eduardo
    Santos, Patricia
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2014, 11 (09)
  • [37] Pohozaev identity and Virial Theorem for the Dirac-Coulomb operator
    Zelati, Vittorio Coti
    Nolasco, Margherita
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2017, 19 (01) : 601 - 615
  • [38] Quantum Mechanical Virial Theorem in Systems with Translational and Rotational Symmetry
    Kuic, Domagoj
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2013, 52 (04) : 1221 - 1239
  • [39] Generalized virial theorem for the Liénard-type systems
    JOSÉ F CARIÑENA
    ANINDYA GHOSE CHOUDHURY
    PARTHA GUHA
    Pramana, 2015, 84 : 373 - 385
  • [40] Virial theorem for Onsager vortices in two-dimensional hydrodynamics
    Pierre-Henri Chavanis
    The European Physical Journal Plus, 127