Robust asymptotic stability of interval fractional-order nonlinear systems with time-delay

被引:25
|
作者
Li, Penghua [1 ]
Chen, Liping [2 ]
Wu, Ranchao [3 ]
Tenreiro Machado, J. A. [4 ]
Lopes, Antonio M. [5 ]
Yuan, Liguo [6 ]
机构
[1] Chongqing Univ Posts & Telecommun, Coll Automat, Automot Elect Engn Res Ctr, Chongqing 400065, Peoples R China
[2] Hefei Univ Technol, Sch Elect Engn & Automat, Hefei 230009, Anhui, Peoples R China
[3] Anhui Univ, Sch Math, Hefei 230601, Anhui, Peoples R China
[4] Polytech Porto, Inst Engn, Dept Elect Engn, R Dr Antonio Bernardino de Almeida 431, P-4249015 Porto, Portugal
[5] Univ Porto, Fac Engn, UISPA LAETA INEGI, Rua Dr Roberto Frias, P-4200465 Porto, Portugal
[6] South China Agr Univ, Sch Math & Informat, Guangzhou 510642, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
NEURAL-NETWORKS; PINNING SYNCHRONIZATION; SUFFICIENT CONDITIONS; NUMERICAL ALGORITHM; BIBO-STABILITY; CRITERION; MODEL;
D O I
10.1016/j.jfranklin.2018.08.017
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper studies the global asymptotic stability of a class of interval fractional-order (FO) nonlinear systems with time-delay. First, a new lemma for the Caputo fractional derivative is presented. It extends the FO Lyapunov direct method allowing the stability analysis and synthesis of FO nonlinear systems with time-delay. Second, by employing FO Razumikhin theorem, a new delay-independent stability criterion, in the form of linear matrix inequality is established for ensuring that a system is globally asymptotically stable. It is shown that the new criterion is simple, easy to use and valid for the FO or integer-order interval neural networks with time-delay. Finally, the feasibility and effectiveness of the proposed scheme are tested with a numerical example. (C) 2018 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:7749 / 7763
页数:15
相关论文
共 50 条
  • [1] Robust stability criterion for fractional-order systems with interval uncertain coefficients and a time-delay
    Gao, Zhe
    ISA TRANSACTIONS, 2015, 58 : 76 - 84
  • [2] Robust stabilization of interval fractional-order plants with one time-delay by fractional-order controllers
    Gao, Zhe
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2017, 354 (02): : 767 - 786
  • [3] Stability Analysis of Finite Time for a Class of Nonlinear Time-Delay Fractional-Order Systems
    Ben Makhlouf, Abdellatif
    Mchiri, Lassaad
    Rhaima, Mohamed
    FRACTAL AND FRACTIONAL, 2024, 8 (01)
  • [4] Asymptotic stabilization of a class of uncertain nonlinear time-delay fractional-order systems via a robust delay-independent controller
    Binazadeh, T.
    Yousefi, M.
    JOURNAL OF VIBRATION AND CONTROL, 2018, 24 (19) : 4541 - 4550
  • [5] Robust stabilizing regions of fractional-order PDμ controllers of time-delay fractional-order systems
    Gao, Zhe
    Yan, Ming
    Wei, Junxiu
    JOURNAL OF PROCESS CONTROL, 2014, 24 (01) : 37 - 47
  • [6] Positivity and Stability of Fractional-Order Linear Time-Delay Systems
    HAO Yilin
    HUANG Chengdai
    CAO Jinde
    LIU Heng
    JournalofSystemsScience&Complexity, 2022, 35 (06) : 2181 - 2207
  • [7] Stability analysis of time-delay incommensurate fractional-order systems
    Tavazoei, Mohammad
    Asemani, Mohammad Hassan
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2022, 109
  • [8] Positivity and Stability of Fractional-Order Linear Time-Delay Systems
    Yilin Hao
    Chengdai Huang
    Jinde Cao
    Heng Liu
    Journal of Systems Science and Complexity, 2022, 35 : 2181 - 2207
  • [9] Positivity and Stability of Fractional-Order Linear Time-Delay Systems
    Hao Yilin
    Huang Chengdai
    Cao Jinde
    Liu Heng
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2022, 35 (06) : 2181 - 2207
  • [10] Robust Stability Analysis of Interval Fractional-Order Plants with Interval Time Delay and General Form of Fractional-Order Controllers
    Ghorbani, Majid
    Tavakoli-Kakhki, Mahsan
    Tepljakov, Aleksei
    Petlenkov, Eduard
    Farnam, Arash
    Crevecoeur, Guillaume
    IEEE Control Systems Letters, 2022, 6 : 1268 - 1273