Local Complete Segal Spaces

被引:1
作者
Meadows, Nicholas J. [1 ]
机构
[1] Western Univ, Dept Math, London, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Simplicial sets; Quasi-categories; Simplicial presheaves; Complete segal categories; Topos theory; Descent; QUASI-CATEGORIES; MODEL;
D O I
10.1007/s10485-018-9535-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop a model structure on bimplicial presheaves on a small site C, for which the weak equivalences are local ( or stalkwise) weak equivalences in the complete Segal model structure. We call this the local Complete Segal model structure. This model structure can be realized as a left Bousfield localization of the Jardine ( injective) model structure on the simplicial presheaves on a site C /.op. Furthermore, it is shown that this model structure is Quillen equivalent to themodel structure of the author's paper ( Meadows in TAC31( 24): 690711, 2016). This Quillen equivalence extends an equivalence between the complete Segal space and Joyal model structures, due to Joyal and Tierney ( Categories in algebra, geometry and mathematical physics, contemporary mathematics, vol. 431. American Mathematical Society, Providence, pp 277- 326, 2007). As an application, we compare the notion of descent in the local Joyal model structure to the notion of descent in the injective model structure. Interestingly, this is a consequence of the Quillen equivalence between the local Joyal and local Complete Segal model structures.
引用
收藏
页码:1265 / 1281
页数:17
相关论文
共 11 条
[1]  
Goerss P. G., 2009, MODERN BIRKHAUSER CL
[2]  
Hirschorn PhillipS., 2003, Mathematical Surveys and Monographs
[3]   Fibred sites and stack cohomology [J].
Jardine, J. F. .
MATHEMATISCHE ZEITSCHRIFT, 2006, 254 (04) :811-836
[4]   Quasi-categories and Kan complexes [J].
Joyal, A .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2002, 175 (1-3) :207-222
[5]  
Joyal A, 2007, CONTEMP MATH, V431, P277
[6]  
Lurie J, 2009, Ann. of Math. Stud., V170
[7]  
Meadows N. J, 2018, COCYCLES LOCAL UNPUB
[8]  
Meadows NJ, 2016, THEOR APPL CATEG, V31, P690
[9]   A model for the homotopy theory of homotopy theory [J].
Rezk, C .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (03) :973-1007
[10]  
Simpson C., 2014, Alexandre Grothendieck: a mathematical portrait, P83